40,033 research outputs found
Hadronic B Decays to Charmless VT Final States
Charmless hadronic decays of B mesons to a vector meson (V) and a tensor
meson (T) are analyzed in the frameworks of both flavor SU(3) symmetry and
generalized factorization. We also make comments on B decays to two tensor
mesons in the final states. Certain ways to test validity of the generalized
factorization are proposed, using decays. We calculate the branching
ratios and CP asymmetries using the full effective Hamiltonian including all
the penguin operators and the form factors obtained in the non-relativistic
quark model of Isgur, Scora, Grinstein and Wise.Comment: 27 pages, no figures, LaTe
Kinetics and moving species during Co2Si formation by rapid thermal annealing
We have investigated the growth kinetics and identified the moving species during Co2Si formation by rapid thermal annealing (RTA). For the kinetics study, samples which consisted of a thin Co film on an evaporated Si substrate were used. To study which species moves, samples imbedded with two very thin Ta markers were employed. Upon RTA, only one silicide phase, Co2Si, was observed to grow before all Co was consumed. The square root of time dependence and the activation energy of about 2.1±0.2 eV were observed during the Co2Si formation up to 680 °C. The marker study indicated that Co is the dominant mobile species during Co2Si formation by RTA. We conclude that Co2Si grows by the same mechanisms during RTA and conventional thermal annealing
Silicon resistor to measure temperature during rapid thermal annealing
A resistor composed of a piece of Si wafer and two thin silver wires attached to it, can reliably sense the temperature during rapid thermal annealing (RTA). As constant electric current passes through the Si piece, the resistivity change of Si with temperature produces a voltage signal that can be readily calibrated and converted to an actual temperature of the samples. An accuracy better than ±10 °C is achieved between 300° and 600 °C
Study of large adaptive arrays for space technology applications
The research in large adaptive antenna arrays for space technology applications is reported. Specifically two tasks were considered. The first was a system design study for accurate determination of the positions and the frequencies of sources radiating from the earth's surface that could be used for the rapid location of people or vehicles in distress. This system design study led to a nonrigid array about 8 km in size with means for locating the array element positions, receiving signals from the earth and determining the source locations and frequencies of the transmitting sources. It is concluded that this system design is feasible, and satisfies the desired objectives. The second task was an experiment to determine the largest earthbound array which could simulate a spaceborne experiment. It was determined that an 800 ft array would perform indistinguishably in both locations and it is estimated that one several times larger also would serve satisfactorily. In addition the power density spectrum of the phase difference fluctuations across a large array was measured. It was found that the spectrum falls off approximately as f to the minus 5/2 power
Recommended from our members
Following the rivers: historical reconstruction of California voles Microtus californicus (Rodentia: Cricetidae) in the deserts of eastern California
The California vole, Microtus californicus, restricted to habitat patches where water is available nearly year-round, is a remnant of the mesic history of the southern Great Basin and Mojave deserts of eastern California. The history of voles in this region is a model for species-edge population dynamics through periods of climatic change. We sampled voles from the eastern deserts of California and examined variation in the mitochondrial cytb gene, three nuclear intron regions, and across 12 nuclear microsatellite markers. Samples are allocated to two mitochondrial clades: one associated with southern California and the other with central and northern California. The limited mtDNA structure largely recovers the geographical distribution, replicated by both nuclear introns and microsatellites. The most remote population, Microtus californicus scirpensis at Tecopa near Death Valley, was the most distinct. This population shares microsatellite alleles with both mtDNA clades, and both its northern clade nuclear introns and southern clade mtDNA sequences support a hybrid origin for this endangered population. The overall patterns support two major invasions into the desert through an ancient system of riparian corridors along streams and lake margins during the latter part of the Pleistocene followed by local in situ divergence subsequent to late Pleistocene and Holocene drying events. Changes in current water resource use could easily remove California voles from parts of the desert landscape
- …