12,458 research outputs found

    Calorimetric Evidence of Strong-Coupling Multiband Superconductivity in Fe(Te0.57Se0.43) Single Crystal

    Get PDF
    We have investigated the specific heat of optimally-doped iron chalcogenide superconductor Fe(Te0.57Se0.43) with a high-quality single crystal sample. The electronic specific heat Ce of this sample has been successfully separated from the phonon contribution using the specific heat of a non-superconducting sample (Fe0.90Cu0.10)(Te0.57Se0.43) as a reference. The normal state Sommerfeld coefficient gamma_n of the superconducting sample is found to be ~ 26.6 mJ/mol K^2, indicating intermediate electronic correlation. The temperature dependence of Ce in the superconducting state can be best fitted using a double-gap model with 2Delta_s(0)/kBTc = 3.92 and 2Delta_l(0)/kBTc = 5.84. The large gap magnitudes derived from fitting, as well as the large specific heat jump of Delta_Ce(Tc)/gamma_n*Tc ~ 2.11, indicate strong-coupling superconductivity. Furthermore, the magnetic field dependence of specific heat shows strong evidence for multiband superconductivity

    A 1.3 cm line survey toward IRC +10216

    Full text link
    IRC +10216 is the prototypical carbon star exhibiting an extended molecular circumstellar envelope. Its spectral properties are therefore the template for an entire class of objects. The main goal is to systematically study the λ\lambda \sim1.3 cm spectral line characteristics of IRC +10216. We carried out a spectral line survey with the Effelsberg-100 m telescope toward IRC +10216. It covers the frequency range between 17.8 GHz and 26.3 GHz (K-band). In the circumstellar shell of IRC +10216, we find 78 spectral lines, among which 12 remain unidentified. The identified lines are assigned to 18 different molecules and radicals. A total of 23 lines from species known to exist in this envelope are detected for the first time outside the Solar System and there are additional 20 lines first detected in IRC +10216. The potential orgin of "U" lines is also discussed. Assuming local thermodynamic equilibrium (LTE), we then determine rotational temperatures and column densities of 17 detected molecules. Molecular abundances relative to H2_{2} are also estimated. A non-LTE analysis of NH3_{3} shows that the bulk of its emission arises from the inner envelope with a kinetic temperature of 70±\pm20 K. Evidence for NH3_{3} emitting gas with higher kinetic temperature is also obtained, and potential abundance differences between various 13^{13}C-bearing isotopologues of HC5_{5}N are evaluated. Overall, the isotopic 12^{12}C/13^{13}C ratio is estimated to be 49±\pm9. Finally, a comparison of detected molecules in the λ\lambda \sim1.3 cm range with the dark cloud TMC-1 indicates that silicate-bearing molecules are more predominant in IRC +10216.Comment: 32 pages, 9 figures, Accepted by A&

    Tick-borne encephalitis virus induces chemokine RANTES expression via activation of IRF-3 pathway.

    Get PDF
    BACKGROUND: Tick-borne encephalitis virus (TBEV) is one of the most important flaviviruses that targets the central nervous system (CNS) and causes encephalitides in humans. Although neuroinflammatory mechanisms may contribute to brain tissue destruction, the induction pathways and potential roles of specific chemokines in TBEV-mediated neurological disease are poorly understood. METHODS: BALB/c mice were intracerebrally injected with TBEV, followed by evaluation of chemokine and cytokine profiles using protein array analysis. The virus-infected mice were treated with the CC chemokine antagonist Met-RANTES or anti-RANTES mAb to determine the role of RANTES in affecting TBEV-induced neurological disease. The underlying signaling mechanisms were delineated using RANTES promoter luciferase reporter assay, siRNA-mediated knockdown, and pharmacological inhibitors in human brain-derived cell culture models. RESULTS: In a mouse model, pathological features including marked inflammatory cell infiltrates were observed in brain sections, which correlated with a robust up-regulation of RANTES within the brain but not in peripheral tissues and sera. Antagonizing RANTES within CNS extended the survival of mice and reduced accumulation of infiltrating cells in the brain after TBEV infection. Through in vitro studies, we show that virus infection up-regulated RANTES production at both mRNA and protein levels in human brain-derived cell lines and primary progenitor-derived astrocytes. Furthermore, IRF-3 pathway appeared to be essential for TBEV-induced RANTES production. Site mutation of an IRF-3-binding motif abrogated the RANTES promoter activity in virus-infected brain cells. Moreover, IRF-3 was activated upon TBEV infection as evidenced by phosphorylation of TBK1 and IRF-3, while blockade of IRF-3 activation drastically reduced virus-induced RANTES expression. CONCLUSIONS: Our findings together provide insights into the molecular mechanism underlying RANTES production induced by TBEV, highlighting its potential importance in the process of neuroinflammatory responses to TBEV infection

    Weak anisotropy of the superconducting upper critical field in Fe1.11Te0.6Se0.4 single crystals

    Full text link
    We have determined the resistive upper critical field Hc2 for single crystals of the superconductor Fe1.11Te0.6Se0.4 using pulsed magnetic fields of up to 60T. A rather high zero-temperature upper critical field of mu0Hc2(0) approx 47T is obtained, in spite of the relatively low superconducting transition temperature (Tc approx 14K). Moreover, Hc2 follows an unusual temperature dependence, becoming almost independent of the magnetic field orientation as the temperature T=0. We suggest that the isotropic superconductivity in Fe1.11Te0.6Se0.4 is a consequence of its three-dimensional Fermi-surface topology. An analogous result was obtained for (Ba,K)Fe2As2, indicating that all layered iron-based superconductors exhibit generic behavior that is significantly different from that of the high-Tc cuprates.Comment: 4 pages, 4 figures, submit to PR

    Coupling of electronic and magnetic properties in Fe1+y(Te1-xSex)

    Full text link
    We have studied the coupling of electronic and magnetic properties in Fe1+y(Te1-xSex) via systematic specific heat, magnetoresistivity, and Hall coefficient measurements on two groups of samples with y = 0.02 and 0.1. In the y = 0.02 series, we find that the 0.09 < x < 0.3 composition region, where superconductivity is suppressed, has large Sommerfeld coefficient Gamma (~55-65 mJ/mol K^2), positive Hall coefficient R_H and negative magnetoresistance MR at low temperature, in sharp contrast with the x=0.4-0.5 region where Gamma drops to ~ 26 mJ/mol K^2 and R_H / MR becomes negative/positive at low temperature. Dramatic changes of Gamma, as well as sign reversal in low-temperature RH and MR, are also observed across the x~0.1 boundary where the long-range antiferromagnetic order is suppressed. However, for the system with rich interstitial excess Fe (y = 0.1), where bulk superconductivity is suppressed even for x=0.4-0.5, the variations of Gamma, R_H and MR with x are distinct from those seen in y = 0.02 system: Gamma is ~40 mJ/mol K^2 for 0.1 < x < 0.3, and drops to ~ 34 mJ/mol K^2 for x = 0.4-0.5; R_H and MR does not show any sign reversal as x is increased above 0.3. We will show that all these results can be understood in light of the evolution of the incoherent magnetic scattering by (pi,0) magnetic fluctuations with Se concentration. In addition, with the suppression of magnetic scattering by magnetic field, we observed the surprising effect of a remarkable increase in the superconducting volume fraction under moderate magnetic fields for x=0.3-0.4 samples in the y = 0.02 system.Comment: To be appeared in PR

    A 1.3 cm Line Survey toward Orion KL

    Full text link
    Orion KL has served as a benchmark for spectral line searches throughout the (sub)millimeter regime. The main goal is to systematically study spectral characteristics of Orion KL in the 1.3 cm band. We carried out a spectral line survey (17.9 GHz to 26.2 GHz) with the Effelsberg-100 m telescope towards Orion KL. We find 261 spectral lines, yielding an average line density of about 32 spectral features per GHz above 3σ\sigma. The identified lines include 164 radio recombination lines (RRLs) and 97 molecular lines. A total of 23 molecular transitions from species known to exist in Orion KL are detected for the first time in the interstellar medium. Non-metastable 15NH3 transitions are detected in Orion KL for the first time. Based on the velocity information of detected lines and the ALMA images, the spatial origins of molecular emission are constrained and discussed. A narrow feature is found in SO2 (81,772,68_{1,7}-7_{2,6}), possibly suggesting the presence of a maser line. Column densities and fractional abundances relative to H2 are estimated for 12 molecules with LTE methods. Rotational diagrams of non-metastable 14NH3 transitions with J=K+1 to J=K+4 yield different results; metastable 15NH3 is found to have a higher excitation temperature than non-metastable 15NH3, indicating that they may trace different regions. Elemental and isotopic abundance ratios are estimated: 12C/13C=63+-17, 14N/15N=100+-51, D/H=0.0083+-0.0045. The dispersion of the He/H ratios derived from Hα\alpha/Heα\alpha pairs to Hδ\delta/Heδ\delta pairs is very small, which is consistent with theoretical predictions that the departure coefficients bn factors for hydrogen and helium are nearly identical. Based on a non-LTE code neglecting excitation by the infrared radiation field and a likelihood analysis, we find that the denser regions have lower kinetic temperature, which favors an external heating of the Hot Core.Comment: 70 pages, 26 figures, 12 tables, accepted for publication in A&A. Figs. 1, 2, 8, 9 have been downsize

    Field-Orientation Dependent Heat Capacity Measurements at Low Temperatures with a Vector Magnet System

    Get PDF
    We describe a heat capacity measurement system for the study of the field-orientation dependence for temperatures down to 50 mK. A "Vector Magnet" combined with a mechanical rotator for the dewar enables the rotation of the magnetic field without mechanical heating in the cryostat by friction. High reproducibility of the field direction, as well as an angular resolution of better than 0.01 degree, is obtained. This system is applicable to other kinds of measurements which require a large sample space or an adiabatic sample environment, and can also be used with multiple refrigerator inserts interchangeably.Comment: 7 pages, 8 figure
    corecore