11,268 research outputs found

    Dynamic Monte Carlo Study of the Two-Dimensional Quantum XY Model

    Full text link
    We present a dynamic Monte Carlo study of the Kosterlitz-Thouless phase transition for the spin-1/2 quantum XY model in two dimensions. The short-time dynamic scaling behaviour is found and the dynamical exponent θ\theta, zz and the static exponent η\eta are determined at the transition temperature.Comment: 6 pages with 3 figure

    Corrections to Scaling for the Two-dimensional Dynamic XY Model

    Full text link
    With large-scale Monte Carlo simulations, we confirm that for the two-dimensional XY model, there is a logarithmic correction to scaling in the dynamic relaxation starting from a completely disordered state, while only an inverse power law correction in the case of starting from an ordered state. The dynamic exponent zz is z=2.04(1)z=2.04(1).Comment: to appear as a Rapid commu. in Phys. Rev.

    Short-time critical dynamics and universality on a two-dimensional Triangular Lattice

    Full text link
    Critical scaling and universality in short-time dynamics for spin models on a two-dimensional triangular lattice are investigated by using Monte Carlo simulation. Emphasis is placed on the dynamic evolution from fully ordered initialstates to show that universal scaling exists already in the short-time regime in form of power-law behavior of the magnetization and Binder cumulant. The results measured for the dynamic and static critical exponents, θ\theta, zz, β\beta and ν\nu, confirm explicitly that the Potts models on the triangular lattice and square lattice belong to the same universality class. Our critical scaling analysis strongly suggests that the simulation for the dynamic relaxation can be used to determine numerically the universality.Comment: LaTex, 11 pages and 10 figures, to be published in Physica

    Peierls distorted chain as a quantum data bus for quantum state transfer

    Full text link
    We systematically study the transfer of quantum state of electron spin as the flying qubit along a half-filled Peierls distorted tight-binding chain described by the Su-Schrieffer-Heeger (SSH) model, which behaves as a quantum data bus. This enables a novel physical mechanism for quantum communication with always-on interaction: the effective hopping of the spin carrier between sites AA and BB connected to two sites in this SSH chain can be induced by the quasi-excitations of the SSH model. As we prove, it is the Peierls energy gap of the SSH quasi-excitations that plays a crucial role to protect the robustness of the quantum state transfer process. Moreover, our observation also indicates that such a scheme can also be employed to explore the intrinsic property of the quantum system.Comment: 10 pages, 6 figure

    SU(2) gluon propagator on a coarse anisotropic lattice

    Get PDF
    We calculated the SU(2) gluon propagator in Landau gauge on an anisotropic coarse lattice with the improved action. The standard and the improved scheme are used to fix the gauge in this work. Even on the coarse lattice the lattice gluon propagator can be well described by a function of the continuous momentum. The effect of the improved gauge fixing scheme is found not to be apparent. Based on the Marenzoni's model, the mass scale and the anomalous dimension are extracted and can be reasonably extrapolated to the continuum limit with the values α∼0.3\alpha\sim 0.3 and M∼600MeVM\sim 600MeV. We also extract the physical anisotropy ξ\xi from the gluon propagator due to the explicit ξ\xi dependence of the gluon propagator.Comment: LaTeX, 14 pages including 4 ps figure

    Polymer translocation out of confined environments

    Get PDF
    We consider the dynamics of polymer translocation out of confined environments. Analytic scaling arguments lead to the prediction that the translocation time scales like τ∼Nβ+ν2DR1+(1−ν2D)/ν\tau\sim N^{\beta+\nu_{2D}}R^{1+(1-\nu_{2D})/\nu} for translocation out of a planar confinement between two walls with separation RR into a 3D environment, and τ∼Nβ+1R\tau \sim N^{\beta+1}R for translocation out of two strips with separation RR into a 2D environment. Here, NN is the chain length, ν\nu and ν2D\nu_{2D} are the Flory exponents in 3D and 2D, and β\beta is the scaling exponent of translocation velocity with NN, whose value for the present choice of parameters is β≈0.8\beta \approx 0.8 based on Langevin dynamics simulations. These scaling exponents improve on earlier predictions.Comment: 5 pages, 5 figures. To appear in Phys. Rev.

    Transverse thermal depinning and nonlinear sliding friction of an adsorbed monolayer

    Full text link
    We study the response of an adsorbed monolayer under a driving force as a model of sliding friction phenomena between two crystalline surfaces with a boundary lubrication layer. Using Langevin-dynamics simulation, we determine the nonlinear response in the direction transverse to a high symmetry direction along which the layer is already sliding. We find that below a finite transition temperature, there exist a critical depinning force and hysteresis effects in the transverse response in the dynamical state when the adlayer is sliding smoothly along the longitudinal direction.Comment: 4 pages, 4 figures, to appear in Phys. Rev. Let

    Prediction and benefits of minimal disease activity in patients with psoriatic arthritis and active skin disease in the ADEPT trial

    Get PDF
    Objectives: To determine the proportion of patients with psoriatic arthritis in the Adalimumab Effectiveness in Psoriatic Arthritis trial achieving minimal disease activity (MDA) and its individual components at 1 or more visits over 144 weeks, identify baseline predictors of MDA achievement, and evaluate the association of MDA status with independent quality of life (QoL)-related patient-reported outcomes (PROs). Methods: Univariate and multivariate analyses were used to identify the baseline characteristics that predicted achievement of MDA at individual time points (weeks 12 through 144) or sustained MDA (achievement of MDA at 2 consecutive time points 12 weeks apart). The association of independent QoL-related PROs with MDA achievement was evaluated at weeks 24 and 144. Results: In univariate analyses, higher baseline patient assessment of pain, tender joint count (TJC), enthesitis and Health Assessment Questionnaire-Disability Index (HAQ-DI) score were significantly associated with lower likelihood of achieving MDA at later time points. Multivariate analyses confirmed higher baseline HAQ-DI as a significant predictor for failure to achieve MDA at later time points. Achievement of sustained MDA was associated with lower baseline TJC and HAQ-DI score. Achievement of different MDA components appeared to be treatment dependent. MDA achievers had significantly better QoL-related PROs and greater improvements in PROs from baseline to week 24 compared with non-achievers. Conclusions: Higher HAQ-DI score was the most consistent baseline factor that decreased the likelihood of achieving MDA and sustained MDA at later time points. Achieving MDA was associated with better independent QoL-related PROs

    Polymer translocation through a nanopore under an applied external field

    Get PDF
    We investigate the dynamics of polymer translocation through a nanopore under an externally applied field using the 2D fluctuating bond model with single-segment Monte Carlo moves. We concentrate on the influence of the field strength EE, length of the chain NN, and length of the pore LL on forced translocation. As our main result, we find a crossover scaling for the translocation time τ\tau with the chain length from τ∼N2ν\tau \sim N^{2\nu} for relatively short polymers to τ∼N1+ν\tau \sim N^{1 + \nu} for longer chains, where ν\nu is the Flory exponent. We demonstrate that this crossover is due to the change in the dependence of the translocation velocity v on the chain length. For relatively short chains v∼N−νv \sim N^{- \nu}, which crosses over to v∼N−1v \sim N^{- 1} for long polymers. The reason for this is that with increasing NN there is a high density of segments near the exit of the pore, which slows down the translocation process due to slow relaxation of the chain. For the case of a long nanopore for which R∥R_\parallel , the radius of gyration RgR_{g} along the pore, is smaller than the pore length, we find no clear scaling of the translocation time with the chain length. For large NN, however, the asymptotic scaling τ∼N1+ν\tau \sim N^{1 + \nu} is recovered. In this regime, τ\tau is almost independent of LL. We have previously found that for a polymer, which is initially placed in the middle of the pore, there is a minimum in the escape time for R∥≈LR_\parallel \approx L. We show here that this minimum persists for a weak fields EE such that ELEL is less than some critical value, but vanishes for large values of ELEL.Comment: 25 Pages, 10 figures. Submitted to J. Chem. Phys. J. Chem. Phys. 124, in press (2006
    • …
    corecore