75,529 research outputs found
Enhancement of singly and multiply strangeness in p-Pb and Pb-Pb collisions at 158A GeV/c
The idea that the reduction of the strange quark suppression in string
fragmentation leads to the enhancement of strange particle yield in
nucleus-nucleus collisions is applied to study the singly and multiply strange
particle production in p-Pb and Pb-Pb collisions at 158A GeV/c. In this
mechanism the strange quark suppression factor is related to the effective
string tension, which increases in turn with the increase of the energy, of the
centrality and of the mass of colliding system. The WA97 observation that the
strange particle enhancement increases with the increasing of centrality and of
strange quark content in multiply strange particles in Pb-Pb collisions with
respect to p-Pb collisions was accounted reasonably.Comment: 8 pages, 3 PostScript figures, in Latex form. submitted to PR
On multiplicity correlations in the STAR data
The STAR data on the multiplicity correlations between narrow psudorapidity
bins in the pp and AuAu collisions are discussed. The PYTHIA 8.145 generator is
used for the pp data, and a naive superposition model is presented for the AuAu
data. It is shown that the PYTHIA generator with default parameter values
describes the pp data reasonably well, whereas the superposition model fails to
reproduce the centrality dependence seen in the data. Some possible reasons for
this failure and a comparison with other models are presented.Comment: 8 pages, 3 figure
Open String Creation by S-Branes
An sp-brane can be viewed as the creation and decay of an unstable
D(p+1)-brane. It is argued that the decaying half of an sp-brane can be
described by a variant of boundary Liouville theory. The pair creation of open
strings by a decaying s-brane is studied in the minisuperspace approximation to
the Liouville theory. In this approximation a Hagedorn-like divergence is found
in the pair creation rate, suggesting the s-brane energy is rapidly transferred
into closed string radiation.Comment: Talk presented at the Hangzhou String 2002 Conference, August 12-1
Broadband spin-controlled focusing via logarithmic-spiral nanoslits of varying width
This work presents analytical, numerical and experimental demonstrations of light diffracted through a logarithmic spiral (LS) nanoslit, which forms a type of switchable and focus-tunable structure. Owing to a strong dependence on the incident photon spin, the proposed LS-nanoslit converges incoming light of opposite handedness (to that of the LS-nanoslit) into a confined subwavelength spot, while it shapes light with similar chirality into a donut-like intensity profile. Benefitting from the varying width of the LS-nanoslit, different incident wavelengths interfere constructively at different positions, i.e., the focal length shifts from 7.5 μm (at λ = 632.8 nm) to 10 μm (at λ = 488 nm), which opens up new opportunities for tuning and spatially separating broadband light at the micrometer scale
Study of relativistic nuclear collisions at AGS energies from p+Be to Au+Au with hadronic cascade model
A hadronic cascade model based on resonances and strings is used to study
mass dependence of relativistic nuclear collisions from p+Be to Au+Au at AGS
energies (\sim 10\AGeV) systematically. Hadron transverse momentum and
rapidity distributions obtained with both cascade calculations and Glauber type
calculations are compared with experimental data to perform detailed discussion
about the importance of rescattering among hadrons. We find good agreement with
the experimental data without any change of model parameters with the cascade
model. It is found that rescattering is of importance both for the explanation
of high transverse momentum tail and for the multiplicity of produced
particles.Comment: 27 pages, 30 figure
Groundwater augmentation through the site selection of floodwater spreading using a data mining approach (case study: Mashhad Plain, Iran)
© 2018 by the authors. It is a well-known fact that sustainable development goals are difficult to achieve without a proper water resources management strategy. This study tries to implement some state-of-the-art statistical and data mining models i.e., weights-of-evidence (WoE), boosted regression trees (BRT), and classification and regression tree (CART) to identify suitable areas for artificial recharge through floodwater spreading (FWS). At first, suitable areas for the FWS project were identified in a basin in north-eastern Iran based on the national guidelines and a literature survey. Using the same methodology, an identical number of FWS unsuitable areas were also determined. Afterward, a set of different FWS conditioning factors were selected for modeling FWS suitability. The models were applied using 70% of the suitable and unsuitable locations and validated with the rest of the input data (i.e., 30%). Finally, a receiver operating characteristics (ROC) curve was plotted to compare the produced FWS suitability maps. The findings depicted acceptable performance of the BRT, CART, and WoE for FWS suitability mapping with an area under the ROC curves of 92, 87.5, and 81.6%, respectively. Among the considered variables, transmissivity, distance from rivers, aquifer thickness, and electrical conductivity were determined as the most important contributors in the modeling. FWS suitability maps produced by the proposed method in this study could be used as a guideline for water resource managers to control flood damage and obtain new sources of groundwater. This methodology could be easily replicated to produce FWS suitability maps in other regions with similar hydrogeological conditions
Kinetic description of hadron-hadron collisions
A transport model based on the mean free path approach to describe pp
collisions is proposed. We assume that hadrons can be treated as bags of
partons similarly to the MIT bag model. When the energy density in the
collision is higher than a critical value, the bags break and partons are
liberated. The partons expand and can make coalescence to form new hadrons. The
results obtained compare very well with available data and some prediction for
higher energies collisions are discussed. Based on the model we suggest that a
QGP could already be formed in the pp collisions at high energies
A novel long non-coding natural antisense RNA is a negative regulator of Nos1 gene expression
Long non-coding natural antisense transcripts (NATs) are widespread in eukaryotic species. Although recent studies indicate that long NATs are engaged in the regulation of gene expression, the precise functional roles of the vast majority of them are unknown. Here we report that a long NAT (Mm-antiNos1 RNA) complementary to mRNA encoding the neuronal isoform of nitric oxide synthase (Nos1) is expressed in the mouse brain and is transcribed from the non-template strand of the Nos1 locus. Nos1 produces nitric oxide (NO), a major signaling molecule in the CNS implicated in many important functions including neuronal differentiation and memory formation. We show that the newly discovered NAT negatively regulates Nos1 gene expression. Moreover, our quantitative studies of the temporal expression profiles of Mm-antiNos1 RNA in the mouse brain during embryonic development and postnatal life indicate that it may be involved in the regulation of NO-dependent neurogenesis
Phase transition and hyperscaling violation for scalar Black Branes
We investigate the thermodynamical behavior and the scaling symmetries of the
scalar dressed black brane (BB) solutions of a recently proposed, exactly
integrable Einstein-scalar gravity model [1], which also arises as
compactification of (p-1)-branes with a smeared charge. The extremal, zero
temperature, solution is a scalar soliton interpolating between a conformal
invariant AdS vacuum in the near-horizon region and a scale covariant metric
(generating hyperscaling violation on the boundary field theory)
asymptotically. We show explicitly that for the boundary field theory this
implies the emergence of an UV length scale (related to the size of the brane),
which decouples in the IR, where conformal invariance is restored. We also show
that at high temperatures the system undergoes a phase transition. Whereas at
small temperature the Schwarzschild-AdS BB is stable, above a critical
temperature the scale covariant, scalar-dressed BB solution, becomes
energetically preferred. We calculate the critical exponent z and the
hyperscaling violation parameter of the scalar-dressed phase. In particular we
show that the hyperscaling violation parameter is always negative. We also show
that the above features are not a peculiarity of the exact integrable model of
Ref.[1], but are a quite generic feature of Einstein-scalar and
Einstein-Maxwell-scalar gravity models for which the squared-mass of the scalar
field is positive and the potential vanishes exponentially as the scalar field
goes to minus infinity.Comment: 20 pages, 4 figures. In the revised version it has been pointed out
that the Einstein-scalar gravity model considered in the paper also arises as
compactification of black p-branes with smeared charge
Analisis Fatigue Top Side Support Structure Silindris Seastar Tension Leg Platform (TLP) Akibat Beban Lingkungan North Sea
Tension leg Platform adalah bangunan lepas pantai semi terapung yang ditambat dengan tendon sampai dasar laut. Dalam operasinya, TLP akan mendapatkan beban-beban dinamis yang bekerja pada struktur secara periodik. Ini dapat menyebabkan kerusakan struktur baik struktur primer, sekunder maupun tersier yang akibatnya dapat mengganggu operasional struktur. Dalam penelitian ini bertujuan membahas fatigue life pada top side support structure TLP. Model yang digunakan mengacu pada TLP Seastar Matterhorn dengan similarity parameter displacement, sarat desain kondisi operasional dan instalasi pada TLP A West Seno dan bangunan beroperasi di North Sea. Dengan dimensi support OD = 2 meter dengan ketebalan 20 mm dan brace dengan OD = 1 meter, ketebalan 10mm akan dilakukan analisis kelelahan. Meninjau dari motion struktur menunjukkan RAO maksimum gerakan surge, sway, heave, roll, pitch dan yaw berturut-turut adalah 0.884 m/m, 0.884 m/m, 0.39 m/m, 0.32 m/m, 0.34 m/m, dan 0.16 m/m. Periode natural struktur berada pada frekuensi 0.57 rad/s untuk gerakan heave, dan 0.63 untuk gerakan roll dan pitch. Hal ini berarti amplitudo respon akan selalu lebih kecil dari amplitudo gelombang yang datang. Dengan memperhitungkan motion yang terjadi dari rekaman data gelombang selama 34 tahun didapatkan umur kelelahan top side support structure dengan pendekatan Palmgren-miner adalah 1.54E+09 tahun. Struktur masih dikatakan aman karena umur kelelahannya masih di atas umur desain yaitu 75 tahu
- …