3,586 research outputs found

    Universality in the Gross-Neveu model

    Full text link
    We consider universal finite size effects in the large-N limit of the continuum Gross-Neveu model as well as in its discretized versions with Wilson and with staggered fermions. After extrapolation to zero lattice spacing the lattice results are compared to the continuum values.Comment: Lattice2004(theory

    A Cluster Method for the Ashkin--Teller Model

    Full text link
    A cluster Monte Carlo algorithm for the Ashkin-Teller (AT) model is constructed according to the guidelines of a general scheme for such algorithms. Its dynamical behaviour is tested for the square lattice AT model. We perform simulations on the line of critical points along which the exponents vary continuously, and find that critical slowing down is significantly reduced. We find continuous variation of the dynamical exponent zz along the line, following the variation of the ratio α/Îœ\alpha/\nu, in a manner which satisfies the Li-Sokal bound zcluster≄α/Îœz_{cluster}\geq\alpha/\nu, that was so far proved only for Potts models.Comment: 18 pages, Revtex, figures include

    Iron in Hot DA White Dwarfs

    Get PDF
    We present a study of the iron abundance pattern in hot hydrogen-rich (DA) white dwarfs. The study is based on new and archival far ultraviolet spectroscopy of a sample of white dwarfs in the temperature range 30,000 K < T_eff < 64,000 K. The spectra obtained with the Far Ultraviolet Spectroscopic Explorer along with spectra obtained with the Hubble Space Telescope Imaging Spectrograph and the International Ultraviolet Explorer sample FeIII to FeVI absorption lines enabling a detailed iron abundance analysis over a wider range of effective temperatures than previously afforded. The measurements reveal abundance variations in excess of two orders of magnitude between the highest and the lowest temperatures probed, but also show considerable variations (over one order of magnitude) between objects with similar temperatures and surface gravities. Such variations in cooler objects may be imputed to accretion from unseen companions or so-called circumstellar debris although the effect of residual mass-loss and selective radiation pressure in the hottest objects in the sample remain dominant.Comment: Accepted for publication in Ap

    A Swendsen-Wang update algorithm for the Symanzik improved sigma model

    Get PDF
    We study a generalization of Swendsen-Wang algorithm suited for Potts models with next-next-neighborhood interactions. Using the embedding technique proposed by Wolff we test it on the Symanzik improved bidimensional non-linear σ\sigma model. For some long range observables we find a little slowing down exponent (z≃0.3z \simeq 0.3) that we interpret as an effect of the partial frustration of the induced spin model.Comment: Self extracting archive fil

    QCD as a Quantum Link Model

    Get PDF
    QCD is constructed as a lattice gauge theory in which the elements of the link matrices are represented by non-commuting operators acting in a Hilbert space. The resulting quantum link model for QCD is formulated with a fifth Euclidean dimension, whose extent resembles the inverse gauge coupling of the resulting four-dimensional theory after dimensional reduction. The inclusion of quarks is natural in Shamir's variant of Kaplan's fermion method, which does not require fine-tuning to approach the chiral limit. A rishon representation in terms of fermionic constituents of the gluons is derived and the quantum link Hamiltonian for QCD with a U(N) gauge symmetry is expressed in terms of glueball, meson and constituent quark operators. The new formulation of QCD is promising both from an analytic and from a computational point of view.Comment: 27 pages, including three figures. ordinary LaTeX; Submitted to Nucl. Phys.

    Scaling Analysis of the Site-Diluted Ising Model in Two Dimensions

    Get PDF
    A combination of recent numerical and theoretical advances are applied to analyze the scaling behaviour of the site-diluted Ising model in two dimensions, paying special attention to the implications for multiplicative logarithmic corrections. The analysis focuses primarily on the odd sector of the model (i.e., that associated with magnetic exponents), and in particular on its Lee-Yang zeros, which are determined to high accuracy. Scaling relations are used to connect to the even (thermal) sector, and a first analysis of the density of zeros yields information on the specific heat and its corrections. The analysis is fully supportive of the strong scaling hypothesis and of the scaling relations for logarithmic corrections.Comment: 15 pages, 3 figures. Published versio

    The 2-dimensional non-linear sigma-model on a random latice

    Full text link
    The O(n) non-linear σ\sigma-model is simulated on 2-dimensional regular and random lattices. We use two different levels of randomness in the construction of the random lattices and give a detailed explanation of the geometry of such lattices. In the simulations, we calculate the mass gap for n=3,4n=3, 4 and 8, analysing the asymptotic scaling of the data and computing the ratio of Lambda parameters Λrandom/Λregular\Lambda_{\rm random}/\Lambda_{\rm regular}. These ratios are in agreement with previous semi-analytical calculations. We also numerically calculate the topological susceptibility by using the cooling method.Comment: REVTeX file, 23 pages. 13 postscript figures in a separate compressed tar fil

    Three-dimensional Ising model in the fixed-magnetization ensemble: a Monte Carlo study

    Full text link
    We study the three-dimensional Ising model at the critical point in the fixed-magnetization ensemble, by means of the recently developed geometric cluster Monte Carlo algorithm. We define a magnetic-field-like quantity in terms of microscopic spin-up and spin-down probabilities in a given configuration of neighbors. In the thermodynamic limit, the relation between this field and the magnetization reduces to the canonical relation M(h). However, for finite systems, the relation is different. We establish a close connection between this relation and the probability distribution of the magnetization of a finite-size system in the canonical ensemble.Comment: 8 pages, 2 Postscript figures, uses RevTe

    Emergence of robust nucleosome patterns from an interplay of positioning mechanisms

    Get PDF
    Proper positioning of nucleosomes in eukaryotic cells is determined by a complex interplay of factors, including nucleosome-nucleosome interactions, DNA sequence, and active chromatin remodeling. Yet, characteristic features of nucleosome positioning, such as geneaveraged nucleosome patterns, are surprisingly robust across perturbations, conditions, and species. Here, we explore how this robustness arises despite the underlying complexity. We leverage mathematical models to show that a large class of positioning mechanisms merely affects the quantitative characteristics of qualitatively robust positioning patterns. We demonstrate how statistical positioning emerges as an effective description from the complex interplay of different positioning mechanisms, which ultimately only renormalize the model parameter quantifying the effective softness of nucleosomes. This renormalization can be species-specific, rationalizing a puzzling discrepancy between the effective nucleosome softness of S. pombe and S. cerevisiae. More generally, we establish a quantitative framework for dissecting the interplay of different nucleosome positioning determinants
    • 

    corecore