334 research outputs found

    Geometrical Insights for Implicit Generative Modeling

    Full text link
    Learning algorithms for implicit generative models can optimize a variety of criteria that measure how the data distribution differs from the implicit model distribution, including the Wasserstein distance, the Energy distance, and the Maximum Mean Discrepancy criterion. A careful look at the geometries induced by these distances on the space of probability measures reveals interesting differences. In particular, we can establish surprising approximate global convergence guarantees for the 11-Wasserstein distance,even when the parametric generator has a nonconvex parametrization.Comment: this version fixes a typo in a definitio

    Preventing Pseudomonas aeruginosa and Chromobacterium violaceum infections by anti-adhesion-active components of edible seeds

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Pseudomonas aeruginosa </it>adhesion to animal/human cells for infection establishment involves adhesive proteins, including its galactose- and fucose-binding lectins PA-IL (LecA) and PA-IIL (LecB). The lectin binding to the target-cell receptors may be blocked by compatible glycans that compete with those of the receptors, functioning as anti-adhesion glycodecoys. The anti-adhesion treatment is of the utmost importance for abrogating devastating antibiotic-resistant <it>P. aeruginosa </it>infections in immunodeficient and cystic fibrosis (CF) patients. This strategy functions in nature in protecting embryos and neonates. We have shown that PA-IL, PA-IIL, and also CV-IIL (a PA-IIL homolog produced in the related pathogen <it>Chromobacterium violaceum</it>) are highly useful for revealing natural glycodecoys that surround embryos in diverse avian eggs and are supplied to neonates in milks and royal jelly. In the present study, these lectins were used as probes to search for seed embryo-protecting glycodecoys.</p> <p>Methods</p> <p>The lectin-blocking glycodecoy activities were shown by the hemagglutination-inhibition test. Lectin-binding glycoproteins were detected by Western blotting with peroxidase-labeled lectins.</p> <p>Results</p> <p>The present work reports the finding - by using PA-IL, PA-IIL, and CV-IIL - of rich glycodecoy activities of low (< 10 KDa) and high MW (> 10 kDa) compounds (including glycoproteins) in extracts of cashew, cocoa, coffee, pumpkin, and tomato seeds, resembling those of avian egg whites, mammal milks, and royal jelly.</p> <p>Conclusions</p> <p>Edible seed extracts possess lectin-blocking glycodecoys that might protect their embryos from infections and also might be useful for hampering human and animal infections.</p

    Prediction of transient tumor enlargement using MRI tumor texture after radiosurgery on vestibular schwannoma

    Get PDF
    Purpose: Vestibular schwannomas (VSs) are uncommon benign brain tumors, generally treated using Gamma Knife radiosurgery (GKRS). However, due to the possible adverse effect of transient tumor enlargement (TTE), large VS tumors are often surgically removed instead of treated radiosurgically. Since microsurgery is highly invasive and results in a significant increased risk of complications, GKRS is generally preferred. Therefore, prediction of TTE for large VS tumors can improve overall VS treatment and enable physicians to select the most optimal treatment strategy on an individual basis. Currently, there are no clinical factors known to be predictive for TTE. In this research, we aim at predicting TTE following GKRS using texture features extracted from MRI scans. Methods: We analyzed clinical data of patients with VSs treated at our

    Topological Strings on Grassmannian Calabi-Yau manifolds

    Full text link
    We present solutions for the higher genus topological string amplitudes on Calabi-Yau-manifolds, which are realized as complete intersections in Grassmannians. We solve the B-model by direct integration of the holomorphic anomaly equations using a finite basis of modular invariant generators, the gap condition at the conifold and other local boundary conditions for the amplitudes. Regularity of the latter at certain points in the moduli space suggests a CFT description. The A-model amplitudes are evaluated using a mirror conjecture for Grassmannian Calabi-Yau by Batyrev, Ciocan-Fontanine, Kim and Van Straten. The integrality of the BPS states gives strong evidence for the conjecture.Comment: 36 pages, 1 eps figur

    Constructing Impactful Machine Learning Research for Astronomy: Best Practices for Researchers and Reviewers

    Full text link
    Machine learning has rapidly become a tool of choice for the astronomical community. It is being applied across a wide range of wavelengths and problems, from the classification of transients to neural network emulators of cosmological simulations, and is shifting paradigms about how we generate and report scientific results. At the same time, this class of method comes with its own set of best practices, challenges, and drawbacks, which, at present, are often reported on incompletely in the astrophysical literature. With this paper, we aim to provide a primer to the astronomical community, including authors, reviewers, and editors, on how to implement machine learning models and report their results in a way that ensures the accuracy of the results, reproducibility of the findings, and usefulness of the method.Comment: 14 pages, 3 figures; submitted to the Bulletin of the American Astronomical Societ

    The Impact of Insulin Pump Therapy on Glycemic Profiles in Patients with Type 2 Diabetes: Data from the OpT2mise Study

    Get PDF
    Background: The OpT2mise randomized trial was designed to compare the effects of continuous subcutaneous insulin infusion (CSII) and multiple daily injections (MDI) on glucose profiles in patients with type 2 diabetes. Research Design and Methods: Patients with glycated hemoglobin (HbA1c) levels of ≄8% (64 mmol/mol) and ≀12% (108 mmol/mol) despite insulin doses of 0.7-1.8 U/kg/day via MDI were randomized to CSII (n=168) or continued MDI (n=163). Changes in glucose profiles were evaluated using continuous glucose monitoring data collected over 6-day periods before and 6 months after randomization. Results: After 6 months, reductions in HbA1c levels were significantly greater with CSII (-1.1±1.2% [-12.0±13.1 mmol/mol]) than with MDI (-0.4±1.1% [-4.4±12.0 mmol/mol]) (P&lt;0.001). Similarly, compared with patients receiving MDI, those receiving CSII showed significantly greater reductions in 24-h mean sensor glucose (SG) (treatment difference, -17.1 mg/dL; P=0.0023), less exposure to SG &gt;180 mg/dL (-12.4%; P=0.0004) and SG &gt;250 mg/dL (-5.5%; P=0.0153), and more time in the SG range of 70-180 mg/dL (12.3%; P=0.0002), with no differences in exposure to SG&lt;70 mg/dL or in glucose variability. Changes in postprandial (4-h) glucose area under the curve &gt;180 mg/dL were significantly greater with CSII than with MDI after breakfast (-775.9±1,441.2 mg/dL/min vs. -160.7±1,074.1 mg/dL/min; P=0.0015) and after dinner (-731.4±1,580.7 mg/dL/min vs. -71.1±1,083.5 mg/dL/min; P=0.0014). Conclusions: In patients with suboptimally controlled type 2 diabetes, CSII significantly improves selected glucometrics, compared with MDI, without increasing the risk of hypoglycemia

    Magnetic Field Amplification in Galaxy Clusters and its Simulation

    Get PDF
    We review the present theoretical and numerical understanding of magnetic field amplification in cosmic large-scale structure, on length scales of galaxy clusters and beyond. Structure formation drives compression and turbulence, which amplify tiny magnetic seed fields to the microGauss values that are observed in the intracluster medium. This process is intimately connected to the properties of turbulence and the microphysics of the intra-cluster medium. Additional roles are played by merger induced shocks that sweep through the intra-cluster medium and motions induced by sloshing cool cores. The accurate simulation of magnetic field amplification in clusters still poses a serious challenge for simulations of cosmological structure formation. We review the current literature on cosmological simulations that include magnetic fields and outline theoretical as well as numerical challenges.Comment: 60 pages, 19 Figure
    • 

    corecore