809 research outputs found
Solitons in anharmonic chains with ultra-long-range interatomic interactions
We study the influence of long-range interatomic interactions on the
properties of supersonic pulse solitons in anharmonic chains. We show that in
the case of ultra-long-range (e.g., screened Coulomb) interactions three
different types of pulse solitons coexist in a certain velocity interval: one
type is unstable but the two others are stable. The high-energy stable soliton
is broad and can be described in the quasicontinuum approximation. But the
low-energy stable soliton consists of two components, short-range and
long-range ones, and can be considered as a bound state of these components.Comment: 4 pages (LaTeX), 5 figures (Postscript); submitted to Phys. Rev.
Effects of finite curvature on soliton dynamics in a chain of nonlinear oscillators
We consider a curved chain of nonlinear oscillators and show that the
interplay of curvature and nonlinearity leads to a number of qualitative
effects. In particular, the energy of nonlinear localized excitations centered
on the bending decreases when curvature increases, i.e. bending manifests
itself as a trap for excitations. Moreover, the potential of this trap is
double-well, thus leading to a symmetry breaking phenomenon: a symmetric
stationary state may become unstable and transform into an energetically
favorable asymmetric stationary state. The essentials of symmetry breaking are
examined analytically for a simplified model. We also demonstrate a threshold
character of the scattering process, i.e. transmission, trapping, or reflection
of the moving nonlinear excitation passing through the bending.Comment: 13 pages (LaTeX) with 10 figures (EPS
Quantum fluctuations for drag free geodesic motion
The drag free technique is used to force a proof mass to follow a geodesic
motion. The mass is protected from perturbations by a cage, and the motion of
the latter is actively controlled to follow the motion of the proof mass. We
present a theoretical analysis of the effects of quantum fluctuations for this
technique. We show that a perfect drag free operation is in principle possible
at the quantum level, in spite of the back action exerted on the mass by the
position sensor.Comment: 4 pages, 1 figure, RevTeX, minor change
Kinks in the discrete sine-Gordon model with Kac-Baker long-range interactions
We study effects of Kac-Baker long-range dispersive interaction (LRI) between
particles on kink properties in the discrete sine-Gordon model. We show that
the kink width increases indefinitely as the range of LRI grows only in the
case of strong interparticle coupling. On the contrary, the kink becomes
intrinsically localized if the coupling is under some critical value.
Correspondingly, the Peierls-Nabarro barrier vanishes as the range of LRI
increases for supercritical values of the coupling but remains finite for
subcritical values. We demonstrate that LRI essentially transforms the internal
dynamics of the kinks, specifically creating their internal localized and
quasilocalized modes. We also show that moving kinks radiate plane waves due to
break of the Lorentz invariance by LRI.Comment: 11 pages (LaTeX) and 14 figures (Postscript); submitted to Phys. Rev.
Casimir torque between corrugated metallic plates
We consider two parallel corrugated plates and show that a Casimir torque
arises when the corrugation directions are not aligned. We follow the
scattering approach and calculate the Casimir energy up to second order in the
corrugation amplitudes, taking into account nonspecular reflections,
polarization mixing and the finite conductivity of the metals. We compare our
results with the proximity force approximation, which overestimates the torque
by a factor 2 when taking the conditions that optimize the effect. We argue
that the Casimir torque could be measured for separation distances as large as
1 Comment: 7 pages, 3 figures, contribution to QFEXT07 proceeding
Transcriptome divergence during leaf development in two contrasting switchgrass (Panicum virgatum L.) cultivars
The genetics and responses to biotic stressors of tetraploid switchgrass (Panicum virgatum L.) lowland cultivar âKanlowâ and upland cultivar Summer are distinct and can be exploited for trait improvement. In general, there is a paucity of data on the basal differences in transcription across tissue developmental times for switchgrass cultivars. Here, the changes in basal and temporal expression of genes related to leaf functions were evaluated for greenhouse grown âKanlowâ, and âSummerâ plants. Three biological replicates of the 4th leaf pooled from 15 plants per replicate were harvested at regular intervals beginning from leaf emergence through senescence. Increases and decreases in leaf chlorophyll and N content were similar for both cultivars. Likewise, multidimensional scaling (MDS) analysis indicated both cultivar-independent and cultivar-specific gene expression. Cultivar-independent genes and gene-networks included those associated with leaf function, such as growth/ senescence, carbon/nitrogen assimilation, photosynthesis, chlorophyll biosynthesis, and chlorophyll degradation. However, many genes encoding nucleotide-binding leucine rich repeat (NB-LRRs) proteins and wall-bound kinases associated with detecting and responding to environmental signals were differentially expressed. Several of these belonged to unique cultivar-specific gene co-expression networks. Analysis of genomic resequencing data provided several examples of NB-LRRs genes that were not expressed and/or apparently absent in the genomes of Summer plants. It is plausible that cultivar (ecotype)-specific genes and gene-networks could be one of the drivers for the documented differences in responses to leaf-borne pathogens between these two cultivars. Incorporating broad resistance to plant pathogens in elite switchgrass germplasm could improve sustainability of biomass production under low-input conditions
Uncertainties of predictions in models of eternal inflation
In a previous paper \cite{MakingPredictions}, a method of comparing the
volumes of thermalized regions in eternally inflating universe was introduced.
In this paper, we investigate the dependence of the results obtained through
that method on the choice of the time variable and factor ordering in the
diffusion equation that describes the evolution of eternally inflating
universes. It is shown, both analytically and numerically, that the variation
of the results due to factor ordering ambiguity inherent in the model is of the
same order as their variation due to the choice of the time variable.
Therefore, the results are, within their accuracy, free of the spurious
dependence on the time parametrization.Comment: 30 pages, RevTeX, figure included, added some references and Comments
on recent proposal (gr-qc/9511058) of alternative regularization schemes, to
appear in Phys. Rev.
Interrupt Timed Automata: verification and expressiveness
We introduce the class of Interrupt Timed Automata (ITA), a subclass of
hybrid automata well suited to the description of timed multi-task systems with
interruptions in a single processor environment. While the reachability problem
is undecidable for hybrid automata we show that it is decidable for ITA. More
precisely we prove that the untimed language of an ITA is regular, by building
a finite automaton as a generalized class graph. We then establish that the
reachability problem for ITA is in NEXPTIME and in PTIME when the number of
clocks is fixed. To prove the first result, we define a subclass ITA- of ITA,
and show that (1) any ITA can be reduced to a language-equivalent automaton in
ITA- and (2) the reachability problem in this subclass is in NEXPTIME (without
any class graph). In the next step, we investigate the verification of real
time properties over ITA. We prove that model checking SCL, a fragment of a
timed linear time logic, is undecidable. On the other hand, we give model
checking procedures for two fragments of timed branching time logic. We also
compare the expressive power of classical timed automata and ITA and prove that
the corresponding families of accepted languages are incomparable. The result
also holds for languages accepted by controlled real-time automata (CRTA), that
extend timed automata. We finally combine ITA with CRTA, in a model which
encompasses both classes and show that the reachability problem is still
decidable. Additionally we show that the languages of ITA are neither closed
under complementation nor under intersection
Removal of imidacloprid using activated carbon produced from ricinodendron heudelotii shells
In this study, Ricinodendron heudelotii (akpi) shells are used as precursor to prepare activated carbon via chemical activation using phosphoric acid. The characterization of the obtained activated carbon is performed using X-ray diffraction (XRD), Boehm titration method and adsorption of acetic acid. The results show that the prepared activated carbon has a microstructure and a higher specific surface area (1179 m2/g), suggesting that the acid treatment has a significant positive influence on its sorption properties. The maximum adsorption capacity and pollutant elimination efficiency are found to be 43.48 mg/g and 90%, respectively. These results suggest that this low cost agent is an efficient tool to remove organic pollutants especially imidacloprid from wastewater
Stressor- and Corticotropin releasing Factor-induced Reinstatement and Active Stress-related Behavioral Responses are Augmented Following Long-access Cocaine Self-administration by Rats
Rationale Stressful events during periods of drug abstinence likely contribute to relapse in cocaine-dependent individuals. Excessive cocaine use may increase susceptibility to stressor-induced relapse through alterations in brain corticotropin-releasing factor (CRF) responsiveness.
Objectives This study examined stressor- and CRF-induced cocaine seeking and other stress-related behaviors in rats with different histories of cocaine self-administration (SA).
Materials and methods Rats self-administered cocaine under short-access (ShA; 2 h daily) or long-access (LgA; 6 h daily) conditions for 14 days or were provided access to saline and were tested for reinstatement by a stressor (electric footshock), cocaine or an icv injection of CRF and for behavioral responsiveness on the elevated plus maze, in a novel environment and in the lightâdark box after a 14- to 17-day extinction/withdrawal period.
Results LgA rats showed escalating patterns of cocaine SA and were more susceptible to reinstatement by cocaine, EFS, or icv CRF than ShA rats. Overall, cocaine SA increased activity in the center field of a novel environment, on the open arms of the elevated plus maze, and in the light compartment of a lightâdark box. In most cases, the effects of cocaine SA were dependent on the pattern/amount of cocaine intake with statistically significant differences from saline self-administering controls only observed in LgA rats.
Conclusions When examined after several weeks of extinction/ withdrawal, cocaine SA promotes a more active pattern of behavior during times of stress that is associated with a heightened susceptibility to stressor-induced cocaine-seeking behavior and may be the consequence of augmented CRF regulation of addiction-related neurocircuitry
- âŠ