495 research outputs found

    Trends in the magnetic properties of Fe, Co and Ni clusters and monolayers on Ir(111), Pt(111) and Au(111)

    Full text link
    We present a detailed theoretical investigation on the magnetic properties of small single-layered Fe, Co and Ni clusters deposited on Ir(111), Pt(111) and Au(111). For this a fully relativistic {\em ab-initio} scheme based on density functional theory has been used. We analyse the element, size and geometry specific variations of the atomic magnetic moments and their mutual exchange interactions as well as the magnetic anisotropy energy in these systems. Our results show that the atomic spin magnetic moments in the Fe and Co clusters decrease almost linearly with coordination on all three substrates, while the corresponding orbital magnetic moments appear to be much more sensitive to the local atomic environment. The isotropic exchange interaction among the cluster atoms is always very strong for Fe and Co exceeding the values for bulk bcc Fe and hcp Co, whereas the anisotropic Dzyaloshinski-Moriya interaction is in general one or two orders of magnitude smaller when compared to the isotropic one. For the magnetic properties of Ni clusters the magnetic properties can show quite a different behaviour and we find in this case a strong tendency towards noncollinear magnetism

    The Effects of Silicone Contamination on Bond Performance of Various Bond Systems

    Get PDF
    The sensitivity to silicone contamination of a wide variety of adhesive bond systems is discussed. Generalizations regarding factors that make some bond systems more sensitive to contamination than others are inferred and discussed. The effect of silane adhesion promoting primer on the contamination sensitivity of two epoxy/steel bond systems is also discussed

    Quantum Monte Carlo simulations of infinitely strongly correlated fermions

    Full text link
    Numerical simulations of the two-dimensional t-J model in the limit J/t1J/t \ll 1 are performed for rather large systems (up to N=12×12N = 12 \times 12) using a world-line loop-algorithm. It is shown that in the one-hole case with J=0, where no minus signs appear, very low temperatures (βt3000\beta t \sim 3000) are necessary in order to reach Nagaoka's state. J/t \ltsim 0.05 leads to the formation of partially polarized systems, whereas J/t \gtsim 0.05 corresponds to minimal spin. The two-hole case shows enhanced total spin up to the lowest attainable temperatures (βt=150\beta t = 150).Comment: 6 pages, 5 figure

    A novel spin wave expansion, finite temperature corrections and order from disorder effects in the double exchange model

    Full text link
    The magnetic excitations of the double exchange (DE) model are usually discussed in terms of an equivalent ferromagnetic Heisenberg model. We argue that this equivalence is valid only at a quasi--classical level -- both quantum and thermal corrections to the magnetic properties of DE model differ from any effective Heisenberg model because its spin excitations interact only indirectly, through the exchange of charge fluctuations. To demonstrate this, we perform a novel large S expansion for the coupled spin and charge degrees of freedom of the DE model, aimed at projecting out all electrons not locally aligned with core spins. We generalized the Holstein--Primakoff transformation to the case when the length of the spin is by itself an operator, and explicitly constructed new fermionic and bosonic operators to fourth order in 1/\sqrt{S}. This procedure removes all spin variables from the Hund coupling term, and yields an effective Hamiltonian with an overall scale of electron hopping, for which we evaluate corrections to the magnetic and electronic properties in 1/S expansion to order O(1/S^2). We also consider the effect of a direct superexchange antiferromagnetic interaction between core spins. We find that the competition between ferromagnetic double exchange and an antiferromagnetic superexchange provides a new example of an "order from disorder" phenomenon -- when the two interactions are of comparable strength, an intermediate spin configuration (either a canted or a spiral state) is selected by quantum and/or thermal fluctuations.Comment: 21 pages revtex, 11 eps figure

    Interplay of Mott Transition and Ferromagnetism in the Orbitally Degenerate Hubbard Model

    Full text link
    A slave boson representation for the degenerate Hubbard model is introduced. The location of the metal to insulator transition that occurs at commensurate densities is shown to depend weakly on the band degeneracy M. The relative weights of the Hubbard sub-bands depend strongly on M, as well as the magnetic properties. It is also shown that a sizable Hund's rule coupling is required in order to have a ferromagnetic instability appearing. The metal to insulator transition driven by an increase in temperature is a strong function of it.Comment: 5 pages, revtex, 5 postscript figures, submitted to Phys. Rev.

    Lattice dependence of saturated ferromagnetism in the Hubbard model

    Full text link
    We investigate the instability of the saturated ferromagnetic ground state (Nagaoka state) in the Hubbard model on various lattices in dimensions d=2 and d=3. A variational resolvent approach is developed for the Nagaoka instability both for U = infinity and for U < infinity which can easily be evaluated in the thermodynamic limit on all common lattices. Our results significantly improve former variational bounds for a possible Nagaoka regime in the ground state phase diagram of the Hubbard model. We show that a pronounced particle-hole asymmetry in the density of states and a diverging density of states at the lower band edge are the most important features in order to stabilize Nagaoka ferromagnetism, particularly in the low density limit.Comment: Revtex, 18 pages with 18 figures, 7 pages appendices, section on bcc lattice adde

    Disorder Induced Ferromagnetism in Restricted Geometries

    Full text link
    We study the influence of on-site disorder on the magnetic properties of the ground state of the infinite UU Hubbard model. We find that for one dimensional systems disorder has no influence, while for two dimensional systems disorder enhances the spin polarization of the system. The tendency of disorder to enhance magnetism in the ground state may be relevant to recent experimental observations of spin polarized ground states in quantum dots and small metallic grains.Comment: 4 pages, 4 figure

    Three-body correlations in the Nagaoka state on the square lattice

    Full text link
    A three-body scattering theory previously proposed by one of the present authors is developed to be applied to the saturated ferromagnetic state in the two-dimensional Hubbard model. The single-particle Green's function is calculated by taking account of the multiple scattering between two electrons and one hole. Several limiting cases are discussed and the relation to the variational principle is examined. The importance of the three-body correlation is demonstrated in comparison with the results of the ladder approximation. A possible phase boundary for the Nagaoka ground state is presented for the square lattice, which improves the previous variational results.Comment: 13 pages, 8 Postscript figures, submitted to Phys.Rev.
    corecore