95 research outputs found

    New electron source concept for single-shot sub-100 fs electron diffraction in the 100 keV range

    Get PDF
    We present a method for producing sub-100 fs electron bunches that are suitable for single-shot ultrafast electron diffraction experiments in the 100 keV energy range. A combination of analytical results and state-of-the-art numerical simulations show that it is possible to create 100 keV, 0.1 pC, 20 fs electron bunches with a spotsize smaller than 500 micron and a transverse coherence length of 3 nm, using established technologies in a table-top set-up. The system operates in the space-charge dominated regime to produce energy-correlated bunches that are recompressed by established radio-frequency techniques. With this approach we overcome the Coulomb expansion of the bunch, providing an entirely new ultrafast electron diffraction source concept

    Depressive Symptoms and Amygdala Volume in Elderly with Cerebral Small Vessel Disease: The RUN DMC Study

    Get PDF
    Introduction. Late onset depressive symptoms (LODSs) frequently occur in elderly with cerebral small vessel disease (SVD). SVD cannot fully explain LODS; a contributing factor could be amygdala volume. We investigated the relation between amygdala volume and LODS, independent of SVD in 503 participants with symptomatic cerebral SVD. Methods. Patients underwent FLAIR and T1 scanning. Depressive symptoms were assessed with structured questionnaires; amygdala and WML were manually segmented. The relation between amygdala volume and LODS/EODS was investigated and adjusted for age, sex, intracranial volume, and SVD. Results. Patients with LODS had a significantly lower left amygdala volume than those without (P = 0.02), independent of SVD. Each decrease of total amygdala volume (by mL) was related to an increased risk of LODS (OR = 1.77; 95% CI 1.02–3.08; P = 0.04). Conclusion. Lower left amygdala volume is associated with LODS, independent of SVD. This may suggest differential mechanisms, in which individuals with a small amygdala might be vulnerable to develop LODS

    A Tutorial on the Proper Orthogonal Decomposition

    Get PDF
    This tutorial introduces the Proper Orthogonal Decomposition (POD) to engineering students and researchers interested in its use in fluid dynamics and aerodynamics. The objectives are firstly to give an intuitive feel for the method and secondly to provide example MATLAB codes of common POD algorithms. The discussion is limited to the finite-dimensional case and only requires knowledge of basic statistics and matrix algebra. The POD is first introduced with a two-dimensional example in order to illustrate the different projections that take place in the decomposition. The n-dimensional case is then developed using experimental data obtained in a turbulent separation-bubble flow and numerical results from simulations of a cylinder wake flow
    corecore