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A Tutorial on the Proper Orthogonal Decomposition

Julien Weiss
∗

Technical University of Berlin, 10587 Berlin, Germany

This tutorial introduces the Proper Orthogonal Decomposition (POD) to engineering
students and researchers interested in its use in �uid dynamics and aerodynamics. The
objectives are �rstly to give an intuitive feel for the method and secondly to provide
example MATLAB codes of common POD algorithms. The discussion is limited to the
�nite-dimensional case and only requires knowledge of basic statistics and matrix algebra.
The POD is �rst introduced with a two-dimensional example in order to illustrate the
di�erent projections that take place in the decomposition. The n-dimensional case is then
developed using experimental data obtained in a turbulent separation-bubble �ow and
numerical results from simulations of a cylinder wake �ow.

I. Introduction

The Proper Orthogonal Decomposition (POD) originates from the �eld of turbulence. It was introduced
to the �uid-dynamics community by Lumley in 1967 [1] as an attempt to decompose the random vector �eld
representing turbulent �uid motion into a set of deterministic functions that each capture some portion of
the total �uctuating kinetic energy in the �ow. The hope was that a limited number of these deterministic
functions � the POD modes � can give the analyst some idea about the organization of the �ow. In other
words, the POD should help us �nd the elusive coherent structures that populate turbulent �ows but yet
are surprisingly di�cult to de�ne and observe.

Let us write the �uctuating velocity in a �ow u′(x, t), where u′ is the velocity vector U minus its temporal
mean U (we are assuming a statistically stationary �ow with a de�ned temporal mean). Our notations are
x = (x, y, z) for the position vector, U = (U, V,W ) for the velocity vector, and t for time. The idea behind
the POD is to decompose the random vector �eld u′(x, t) into a set of deterministic spatial functions Φk(x)
modulated by random time coe�cients ak(t) so that:

u′(x, t) =

∞∑
k=1

ak(t)Φk(x). (1)

The Φk(x) are the POD (spatial) modes and the ak(t) are their time coe�cients.
In practice, there are many ways to write a decomposition like Eq. 1, the familiar Fourier decomposition

being another well-know method. The P in POD comes from the fact that the POD is `proper', or optimal,
inasmuch as the sequence

∑n
k=1 ak(t)Φk(x) maximizes the kinetic energy that can be captured by the �rst

n spatial modes. The O in POD comes from the fact that the modes are orthonormal, which means that in
a suitable function space one can write:

∫∫∫
x

Φk1
(x)Φk2

(x)dx =

1 if k1 = k2

0 if k1 6= k2
. (2)

The orthonormality property is quite useful since it implies that each time coe�cient ak(t) only depends on
the spatial mode Φk(x). Indeed, by multiplying Eq. 1 with Φk(x) and integrating over space one obtains:

ak(t) =

∫∫∫
x

u′(x, t)Φk(x)dx. (3)
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There are several very good overviews of the POD in the �uid-dynamics literature (e.g. [2, 3, 4, 5, 6, 7]).
With the exception of [3] and [7], these references describe the problem in the in�nite-dimensional space
of continuous functions of space and time, as in Eqs. 2 and 3. While the mathematics are not new, they
are not usually part of the curriculum followed by mechanical or aeronautical engineering students. On
the other hand, these students have normally been introduced to �nite-dimensional matrix algebra. In the
�eld of statistics, POD is called Principal Component Analysis (PCA) and is typically introduced with
�nite-dimensional data, �rst with only two variables for illustrative purposes and then extending to the
n-dimensional case (e.g. [8]). The author believes that this approach is better suited to engineering students
for two reasons: �rst, because the mathematics are more in line with what they learn in school, and second,
because experimental and numerical data are always �nite-dimensional. Thus, the purpose of this tutorial
is to give an introduction to the POD that follows the usual PCA presentation, but speci�cally targeted to
the �elds of �uid mechanics and aerodynamics. The goal is not to demonstrate theoretical results, but to
provide an intuitive feel for the method and a description of common POD algorithms. This approach was
inspired by the papers of Shlens [9], Smith [10], Chatterjee [3], Chen et al. [11], and the books by Jackson
[8] and Kutz [12].

II. Example Flow

In this tutorial, we will illustrate the POD through its computation on the velocity �elds measured
experimentally by particle image velocimetry (PIV) in a turbulent separation-bubble �ow (TSB). The general
�ow geometry is illustrated in Fig. 1 and was investigated in detail in [13]. An incoming turbulent boundary
layer separates because of an adverse pressure gradient and reattaches further downstream because of a
favorable pressure gradient. What we call a TSB is a recirculation zone that is observed on the ceiling of
the wind tunnel and that is bounded by a shear layer. The PIV �eld of view is a 200 mm × 80 mm vertical
rectangle roughly centered at x = 1825 mm and z = 0 mm.

The PIV data consists of Nt = 3580 vector �elds of 129(Nx)× 45(Ny) velocity vectors (U, V ) measured
on a Cartesian grid in the (x, y) plane. The sampling frequency is 900 Hz. For the sake of simplicity we will
only consider the longitudinal velocity U in the calculations. Fig. 2(top) shows an example of instantaneous
contour plot of the longitudinal velocity �eld obtained from PIV (one speci�c snapshot). It can be seen that
the �ow is indeed highly unsteady. Fig. 2(bottom) shows the corresponding time-averaged, longitudinal
velocity �eld with a few representative mean streamlines.a

Figure 1. Experimental set-up of the TSB �ow.

III. The 2-Dimensional Example

Let's start by analyzing the data obtained at two positions (a) and (b) within our separation bubble.
These two points are illustrated by the two small circles in Fig. 2(bottom). Our velocity data thus consists
of two arrays of m = Nt = 3580 longitudinal velocity values (Ua(ti) and Ub(ti)) that we can concatenate
into one m× 2 matrix S, which we will call the matrix of snapshots:

aThe PIV data is available as MATLAB workspace at http://dx.doi.org/10.14279/depositonce-8447.
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Figure 2. Top: Example of instantaneous longitudinal velocity �eld in m/s. Bottom: Time-averaged, longitu-
dinal velocity �eld in m/s. The white line approximately delimits the region of negative mean velocity. The
black lines are three representative mean streamlines. The two circles denote the measurement points used in
Section III.

S =


Ua(t1) Ub(t1)

Ua(t2) Ub(t2)
...

...

Ua(tm) Ub(tm)

 . (4)

Since we are mostly interested in the �ow dynamics, we start by removing the average velocities Ua

and U b from their respective columns in order to get a new snapshot matrix consisting only of the velocity
�uctuations u′a(t) = Ua(t)− Ua and u′b(t) = Ub(t)− U b. We call this new matrix U:

U =


u11 u12

u21 u22
...

...

um1 um2

 =


u′a(t1) u′b(t1)

u′a(t2) u′b(t2)
...

...

u′a(tm) u′b(tm)

 . (5)

The time traces of u′a and u′b are shown in Fig. 3 for an arbitrary time interval. Since we are looking at
a turbulent �ow, the two signals are essentially random. However, because positions (a) and (b) are not too
far apart, the traces tend to follow each other. In other words, there is some correlation between the two
velocity signals.

We can also look at our data on a 2D plot where the x-axis represents the magnitude of u′a and the
y-axis that of u′b. Each row of U is a point on this plane and when we plot all the rows, what we typically
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Figure 3. Longitudinal velocity �uctuations u′(t) at positions (a) and (b).
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Figure 4. Raw data plotted on a plane.
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Figure 5. Raw data projected on unit vector φ.

see is a sort of ellipse like that shown in Fig. 4. Why do we see an ellipse? Again, this is because our data
is correlated. Statistically, there is a relationship between u′a and u′b: when one moves in one direction, the
other also tends to move � on average � in the same direction. Thus, although the velocity �uctuations are
essentially random, there is still some order in this randomness, and this order is seen through the correlation
between u′a and u

′
b. When we search for coherent structures in a �ow, this is precisely what we are interested

in: a zone where the �uid moves in sync and the velocity �uctuations are correlated.
We can verify that our data is correlated by computing its covariance matrix C, which in our 2D case is

the 2× 2 matrix

C =
1

m− 1
UTU =

1

m− 1


m∑
i=1

u′2a (ti)

m∑
i=1

u′a(ti)u
′
b(ti)

m∑
i=1

u′b(ti)u
′
a(ti)

m∑
i=1

u′2b (ti)

 . (6)

The diagonal elements of the covariance matrix are the respective variances of u′a and u′b, whereas each o�-
diagonal element is the covariance between u′a and u′b. The covariance matrix is thus necessarily symmetric
and if the o�-diagonal terms are non-zero, this implies that there is indeed a statistical correlation between
u′a and u

′
b. If the covariance matrix were diagonal, this would mean that u′a and u

′
b are perfectly uncorrelated.

For the data shown in Fig. 4, the covariance matrix is
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C =

(
c11 c12

c21 c22

)
=

(
4.92 2.82

2.82 5.01

)
. (7)

The amount of correlation can be expressed through the correlation coe�cient ρab = c12/
√
c11c22 = 0.57,

which shows that u′a and u′b are indeed fairly well correlated.b The total �uctuating kinetic energy of our
data (TKE), which is de�ned as

TKE =
1

2

1

m− 1

(
m∑
i=1

u′2a (ti) +

m∑
i=1

u′2b (ti)

)
=

1

2
(c11 + c22), (8)

is equal to 4.96 m2/s2.
Let's go back to Fig. 4. Since the data is plotted on a plane, we can decide to measure the variance

of the pair (u′a, u
′
b) along any axis and de�ne this axis as a `mode' of variation. In Fig. 4 we have used a

natural basis to plot our data. On the plane, this natural basis is de�ned by the two vectors (1,0) and (0,1).
So one mode of variation is the horizontal mode (1,0), which physically means the velocity �uctuation at
point (a), and the other is the vertical mode (0,1), which means the �uctuation at point (b). The dataset
corresponding to �uctuations in the pair of variables (u′a, u

′
b) can naturally be expressed as the �uctuations

in u′a and u′b taken separately. In the data from Fig. 4, the variances of u′a and u′b in the natural basis are
4.92 m2/s2 and 5.01 m2/s2, respectively (see Eq. 7). Furthermore, the statistical connection between the
velocity �uctuations at points (a) and (b) is expressed as the o�-diagonal terms of C.

However, we could have also chosen any other basis in the plane to quantify our �uctuations. In fact,
to express our data along any direction on the plane, we simply need to project each row of U onto a unit
vector φ = (φ1, φ2) pointing in this direction. In other words, we need to compute the dot product of each
data point with φ:

a = Uφ =


u11 u12

u21 u22
...

...

um1 um2


(
φ1

φ2

)
=


a1 = u11φ1 + u12φ2

a2 = u21φ1 + u22φ2
...

am = um1φ1 + um2φ2

 . (9)

What we obtain is a m-dimensional array a listing the coordinates ai of our data points projected on the
unit direction vector φ. This is illustrated in Fig. 5 for an exemplary unit vector φ = (2/

√
5, 1/
√

5) '
(0.894, 0.447). To compute the variance of our data on this axis, we write

varφ(a) =
1

m− 1

m∑
i=1

a2i (ti) =
1

m− 1
aTa, (10)

and in the case of our example from Fig. 5 we obtain varφ(a) = 7.19 m2/s2, which is larger than the
variances expressed on the horizontal axis (var(1,0)(a) = var(u′a) = 4.92 m2/s2) or on the vertical axis
(var(0,1)(a) = var(u′b) = 5.01 m2/s2).

Now, obviously there is an in�nity of ways to do this. Any direction φ will lead to a new value of the
variance in this direction. However, intuitively there are two directions that are particular in Fig. 4, namely
the major and minor axes of the ellipse representing our data. It is obvious from Fig. 4 that the maximum
variance will be obtained on the major axis and that, once this direction is considered, the `rest' of the
variance will occur on the minor axis. So the projection Uφ will have maximum variance if φ is on the
major axis of the ellipse. Furthermore, since the major and minor axes are orthogonal, the two unit vectors
in their directions form an orthonormal basis for our dataset. These axes are called the principal axes or the
proper orthogonal modes of the dataset.

How do we compute the directions of the major and minor axes? Using tools from linear algebra, one can
show that they are the two eigenvectors of the covariance matrix C. There is also an intuitive way to see this:
in the proper orthogonal basis, the variance on each axis is maximized and, as a corollary, the covariance
between axes should ideally be zero. This means that the covariance matrix should be a 2 × 2 diagonal

bThe correlation coe�cient ρ between two random variables is de�ned as their covariance divided by the product of their
standard deviations. By construction this coe�cient will lie between −1 and 1. When ρ = 0 the variables are said to be
uncorrelated. When ρ = ±1 the variables are either perfectly correlated (+1) or perfectly anti-correlated (−1).
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Figure 6. Raw data with directions of the eigen-
vectors (EVs) of the covariance matrix.
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Figure 7. Projection of the data points on the
eigenvectors of the covariance matrix.

matrix in the proper orthogonal basis. Now, remember that C is symmetric and as such its eigenvectors
necessarily form an orthonormal basis in which C can be diagonalized [14]. Therefore, the optimized basis
to express our data is simply the set of eigenvectors of the covariance matrix, which are easily computed in
MATLAB by: [PHI LAM] = eig(C). Note that, as a convention, we order the eigenvalues from the largest
to the smallest, so our �rst eigenvector is the one that corresponds to the largest eigenvalue and so on. We
will see shortly that this ordering is equivalent to ranking the modes based on their contribution to the total
�uctuating kinetic energy. Formally, the covariance matrix C is diagonalized as

C = ΦΛΦ−1 = ΦΛΦT (11)

=

(
φ11 φ12

φ21 φ22

)(
λ1 0

0 λ2

)(
φ11 φ21

φ12 φ22

)
,

where the two columns of Φ are the eigenvectors of C. The second equality in Eq. 11 comes from the
fact that C is symmetric, which implies that its eigenvectors are orthonormal or, equivalently, that Φ is an
orthogonal matrix (Φ−1 = ΦT ). Fig. 6 shows our data plotted on the natural basis (u′a, u

′
b) together with

the directions of the eigenvectors of the covariance matrix. Clearly, the eigenvectors are indeed on the major
and minor axes of the ellipse.

To compute the variance of our data on each principal axis, we need to project the data onto each
eigenvector. Thus we write

A = UΦ =


u11 u12

u21 u22
...

...

um1 um2


(
φ11 φ12

φ21 φ22

)
. (12)

The projected components are plotted on the natural basis in Fig. 7, where it is obvious that the variance
along the �rst mode (major axis) will be larger than along the second mode (minor axis). In fact, the
variance on the major axis is given by the �rst (largest) eigenvalue λ1 and the variance on the minor axis
is given by the second (smallest) eigenvalue λ2 since the covariance matrix C′ of the data projected on the
proper orthogonal basis is the diagonal matrix Λ:

C′ =
1

m− 1
ATA =

1

m− 1
(UΦ)T (UΦ) =

1

m− 1
(ΦTUTUΦ) = ΦTCΦ = ΦTΦΛΦTΦ = Λ. (13)
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So why is this useful? Well, the eigenvectors give us an idea of how u′a and u′b are correlated, or how
they `move' together. In the proper orthogonal basis, the correlation between u′a and u′b is not given by the
o�-diagonal terms of the covariance matrix anymore since this matrix is diagonal. Rather, the correlation is
implicit in the directions of the eigenvectors. In fact, the projected variables (ai1) and (ai2) are speci�cally
constructed to be uncorrelated between each other so that each one can be interpreted as variations on one
independent `mode' of �uctuation. In �uid dynamics, the hope is that these modes can each be linked to an
independent coherent structure responsible for the velocity �uctuations. Unfortunately, as we will see later,
this link between POD modes and physical coherent structures is far from trivial.

Let's consider some possible directions of the proper orthogonal modes, which are illustrated in Fig. 8.

• In direction (
√

2/2,
√

2/2), u′a and u′b tend to move in phase with the same amplitude, so we might
expect that they are part of the same `structure' in the �ow. This is the case for the �rst mode in
Fig. 7.

• For (1,0), u′a tends to �uctuate but not u′b. In this case, the velocity �uctuations are not correlated
and the proper orthogonal basis coincides with the natural basis.

• Finally, for (
√

2/2,−
√

2/2), u′a and u
′
b tend to �uctuate in opposition of phase with the same amplitude.

Here also, this could mean a speci�c structure in the �ow, where the velocity at points (a) and (b) is
anti-correlated. This is the case in Fig. 7 for the second mode.

u′a

u′b

(1,0)

(
√

2/2,
√

2/2)

(
√

2/2,−
√

2/2)

Figure 8. Examples of possible directions of eigenmodes.

Futhermore, the eigenvalues rank the correlation with respect to the variance of the data, which when
we consider velocity measurements is the same as saying that they rank the correlation with respect to the
kinetic energy of the velocity �uctuations. In the data shown above, λ1 = 7.78 m2/s2 and λ2 = 2.15 m2/s2.
The TKE is still given by one half of the diagonal elements of the covariance matrix, this time expressed
in the proper orthogonal basis.c Thus we have again TKE = 1

2 (λ1 + λ2) = 4.96 m2/s2. But now we can
compute the proportion of TKE produced by each mode: for mode 1 it is λ1/(λ1 + λ2) ' 0.78 and for mode
2 it is λ2/(λ1 + λ2) ' 0.22. So approximately 78% of the TKE is accounted for by the �rst mode and only
22% by the second. From Fig. 7 we see that the �rst mode is roughly oriented at 45◦, which implies a perfect
correlation between u′a and u′b. Since 78% of the TKE occurs in this �rst mode, it is not surprising that u′a
and u′b are well correlated. Looking back at Fig. 7, we conclude that we have essentially decomposed our pair
of �uctuating velocities into a large portion of in-phase �uctuations and a smaller portion of out-of-phase
�uctuations.

Let's take a break and summarize what we have done so far. We have taken our original matrix of
snapshots S and removed its mean to obtain the matrix U (note that we typically also call U a snapshot
or data matrix). We have then computed the covariance matrix C = 1

m−1UTU and obtained its matrix
of eigenvectors Φ. Finally, we have projected our matrix U onto each eigenvector to obtain a new matrix

cThis is because the trace of an n× n matrix is equal to the sum of its eigenvalues [14].
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A = UΦ containing the components of our data points on each orthogonal mode. Now, an interesting
property of Φ is that it is orthogonal, which means that Φ−1 = ΦT (again, this is because each column of
Φ is an eigenvector of the symmetric matrix C [14]). Therefore, we can easily write our original matrix
U in terms of A:

A = UΦ⇒ U = AΦ−1 = AΦT , (14)

or, written explicitly,

U =


u11 u12

u21 u22
...

...

um1 um2

 =


a11 a12

a21 a22
...

...

am1 am2


(
φ11 φ21

φ12 φ22

)

=


a11φ11 + a12φ12 a11φ21 + a12φ22

a21φ11 + a22φ12 a21φ21 + a22φ22
...

...

am1φ11 + am2φ12 am1φ21 + am2φ22



=


a11φ11 a11φ21

a21φ11 a21φ21
...

...

am1φ11 am1φ21

+


a12φ12 a12φ22

a22φ12 a22φ22
...

...

am2φ12 am2φ22



=


a11

a21
...

am1


(
φ11 φ21

)
+


a12

a22
...

am2


(
φ12 φ22

)

= Ũ1 + Ũ2, (15)

where by de�nition for k = 1, 2:

Ũk =


ũk11 ũk12
ũk21 ũk22
...

...

ũkm1 ũkm2

 =


a1k

a2k
...

amk


(
φ1k φ2k

)
. (16)

This brings us to another very interesting property of the decomposition in proper orthogonal modes.
The original matrix U (that is, our original dataset of �uctuating velocities) can be expressed as the sum of
two terms: matrix Ũ1, whose components are the data projected onto the major axis but expressed in the
natural basis, plus matrix Ũ2, whose components are the projections onto the minor axis, also expressed
in the natural basis. In other words, we have decomposed our original velocity �uctuations into the sum
of a contribution from the �rst mode Ũ1 and a contribution from the second mode Ũ2. To facilitate the
geometric interpretation of these matrix operations, the projections involved in Eqs. 12 and 16 are illustrated
in Fig. 9.

Now, remember that in our particular case, the contribution from the �rst mode is largely dominant
compared to the second mode. So we could try to simplify our data analysis by looking only at the �rst term
on the right hand side of Eq. 15. In other words, we could look only at the �uctuations of the �rst mode Ũ1

and neglect those of the second mode. This is illustrated in Fig. 10, where the time traces of u′a and u′b are

plotted separately, together with the contributions from mode 1 and 2 (Ũ1 and Ũ2). In this example, it is
clear that the �rst mode is a fairly good approximation of the total �uctuations and that matrix U can be
reasonably well approximated by matrix Ũ1. This is consistent with the fact that, as shown above, about
78% of the TKE can be `explained' by the �rst mode. This feature of the POD is called dimensionality
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reduction and although it doesn't really make sense to do this on a 2D problem, it is an extremely useful
property for more complicated problems.
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Figure 10. Contributions from modes 1 and 2 to u′a and u′b.

IV. The n-Dimensional Example

While the 2D example is quite useful to visualize the di�erent projections occurring in the POD algorithm,
the real strength of POD as a decomposition method is on larger-dimensional datasets. To illustrate this,
we now consider the POD on the complete longitudinal velocity �eld measured by PIV. That is, we have an
n = Nx ×Ny = 5805-dimensional problem.

To create our new snapshot matrix, we start by subtracting the time-averaged velocity �eld (Fig. 2)
from each of our individual vector �elds. We obtain a set of m = Nt = 3580 �uctuating velocity �elds
u′(xi, yj , tk). For each instant tk, we then reorder our dataset by concatenating each individual velocity �eld
into one single 1× n row and we stack those rows onto each other. All our �uctuating velocity data is then
summarized into one m× n snapshot matrix U:
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U =


u11 . . . u1n

u21 . . . u2n
...

...

um1 . . . umn

 =


u′(x1, y1, t1) . . . u′(xNx, yNy, t1)

u′(x1, y1, t2) . . . u′(xNx, yNy, t2)
...

...

u′(x1, y1, tm) . . . u′(xNx, yNy, tm)

 , (17)

where each row represents one snapshot measured by the PIV system. In other words, each element (uij) of
U is the velocity �uctuation at point j measured at time i.

We then follow the same steps as in the 2D example. We start by computing the covariance matrix
C = 1

m−1UTU, which is now an n×nmatrix (about 33.7 million elements in our example with n = 5805). We
then compute the eigenvalues and eigenvectors of C through the MATLAB command [PHI LAM] = eig(C)

and we order them from the largest eigenvalue to the smallest. We obtain n eigenvalues λ1...λn and a set of
n eigenvectors arranged as columns in an n× n matrix Φ:

Φ =


φ11 . . . φ1n

φ21 . . . φ2n
...

...

φn1 . . . φnn

 . (18)

As before, the n eigenvectors (the n columns of Φ), are the proper orthogonal modes of the dataset. They
can be seen as the axes of an n-dimensional ellipsoid that �ts the total dataset in n-dimensional space.
Furthermore, the modes are ordered according to the variance in their direction.

How can we visualize these modes? Remember that to create our snapshot matrix U, we have reordered
our data so that each snapshot is concatenated into a single 1 × n row matrix. We can now follow exactly
the inverse procedure and create a synthetic Nx×Ny �eld for each of the columns of Φ. The resulting scalar
�elds are thus often called spatial modes. As an illustration, the left hand side of Fig. 11 shows the three �rst
POD modes (the �rst three columns of Φ) of our turbulent separation bubble as contour plots. Technically,
the dimension of the contour plots is that of velocity, although the plots are often normalized since we are
more interested in the variation of the scalar variable within and between the �elds than in their absolute
value.

At this point, it is worth mentioning that the procedure of reordering a Nx×Ny �eld into a 1×n row can
be done in many ways. The exact procedure is unimportant as long as the same procedure is used in reverse
to visualize the modes.d Furthermore, we have decided here to compute the POD on the longitudinal velocity
data only but we could have used the vertical velocity instead, or even both the longitudinal and vertical
velocity �uctuations in the same snapshot matrix. Had we decided to compute the POD with both the u′

and v′ components, we would simply have extended each row of the snapshot matrix by the v′ components,
viz.

U =


u′(x1, y1, t1) . . . u′(xNx, yNy, t1) v′(x1, y1, t1) . . . v′(xNx, yNy, t1)

u′(x1, y1, t2) . . . u′(xNx, yNy, t2) v′(x1, y1, t2) . . . v′(xNx, yNy, t2)
...

...
...

...

u′(x1, y1, tm) . . . u′(xNx, yNy, tm) v′(x1, y1, tm) . . . v′(xNx, yNy, tm)

 . (19)

The snapshot matrix would have been twice as large (n = 11610) and the covariance matrix would have been
a 11610× 11610 matrix (about 135 million elements). The resulting modes would then each be a 2D vector
�eld instead of a scalar �eld. Furthermore, had we had access to three-dimensional velocity data on a 3D
grid (through the use of a tomographic PIV system, for example), we could have used all three components
of the velocity �elds and obtained volumetric POD modes. The only di�erence would be the number of
elements in the di�erent matrices involved and consequently the storage requirements and the computation
time (the number of columns in the snapshot matrix is doubled for two velocity components and tripled for
three components).

dIn fact, we could also have arranged our Nx × Ny �elds into columns instead of rows. In this case the covariance matrix
would have been computed as C = 1

m−1
UUT .
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Figure 11. Left column: �rst, second and third POD modes of longitudinal velocity �uctuations in the TSB.
Right column: time coe�cients of �rst, second and third POD modes.

Now, how can we interpret our POD modes? Here it is again useful to remember what was done in
the 2D case. In Fig. 8, we interpreted the mode (

√
2/2,
√

2/2) as a synchronized �uctuation of u′a and u′b.
The n-D equivalent of mode (

√
2/2,
√

2/2) is a region where the spatial mode has approximately the same
value. For example, in the contour plot of mode 1 (Fig. 11), there is a large red region that encompasses
roughly the size of the TSB. This means that the longitudinal velocity �uctuations in this region tend to be
correlated and this is interpreted as a global �uctuation of the complete TSB (for more details about this
speci�c case, see [13]). Similarly, in the 2D case, we interpreted the mode (

√
2/2,−

√
2/2) as anti-correlated

velocity �uctuations at both measurement points. In the contour plots of modes 2 and 3, we see red and
blue patches with opposite signs. Here also, this means that the longitudinal velocity in these regions is
anti-correlated: when the velocity moves up in the red zone, it tends to move down in the blue zone, and
vice versa. As we will see later, this type of POD mode is often interpreted as a sign of convected structures.

Now in the n-D case, there are obviously a lot of modes. Is it necessary to interpret all of them? Well,
typically we can concentrate on only a few of the low-order modes. This is because the POD ranks the
modes according to their contribution to the total variance. As an illustration, the 10 �rst eigenvalues from
our calculation are plotted in Fig. 12. The actual eigenvalues are shown on the left axis and their percent
contribution to the TKE is shown on the right (recall that the contribution from mode i is simply λi/Σkλk).
It can be seen that the �rst eigenvalue is largely dominant, with approximately 20% of the TKE. The second
mode contributes 8% and the contribution from the next ones diminishes slowly. This indicates that a
large chunk of the total �uctuations is well represented by the �rst mode, whereas the remaining turbulent
�uctuations are spread among the higher modes. So looking at the �rst few modes is generally su�cient to
identify dominant coherent motions.
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Figure 12. Ten �rst eigenvalues for the TSB example. Left axis: eigenvalues; right axis: percentage of TKE
from each eigenvalue.

Now, like in the 2D case, we can project our original dataset onto each of the n modes by writing
A = UΦ. Written explicitly we have:

a11 . . . a1n

a21 . . . a2n
...

...

am1 . . . amn

 =


u11 . . . u1n

u21 . . . u2n
...

...

um1 . . . umn



φ11 . . . φ1n

φ21 . . . φ2n
...

...

φn1 . . . φnn

 . (20)

Referring back to Fig. 9, we can interpret each aij as the projection of the data measured at time i on mode
j. Here it is important to remember that each data point in our n = 5805-dimensional space represents one
velocity �eld measured by PIV. In other words, each point in our n-dimensional space represents the value of
the longitudinal velocity at n points in physical space. We refer to the columns of A as the time coe�cients
of the modes since for each snapshot k = 1, . . . ,m there will be one projection on each mode (again it is
useful to visualize the projection in the 2D case in Fig. 9). For the case of our turbulent separation bubble,
the time coe�cients of the �rst three modes (the �rst three columns of A expressed as a function of time),
are shown on the right hand side of Fig. 11.

Furthermore, the original snapshot matrix U can be expressed as the sum of the contributions from the
n modes. Indeed, we still have U = AΦ−1 = AΦT :


u11 . . . u1n

u21 . . . u2n
...

...

um1 . . . umn

 =


a11

a21
...

am1


(
φ11 . . . φn1

)
+ . . .+


a1n

a2n
...

amn


(
φ1n . . . φnn

)
(21)

=


ũ111 . . . ũ11n
ũ121 . . . ũ12n
...

...

ũ1m1 . . . ũ1mn

+ . . .+


ũn11 . . . ũn1n
ũn21 . . . ũn2n
...

...

ũnm1 . . . ũnmn

 (22)

with 
ũk11 . . . ũk1n
ũk21 . . . ũk2n
...

...

ũkm1 . . . ũkmn

 =


a1k

a2k
...

amk


(
φ1k . . . φnk

)
= Ũk. (23)
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Notice that each matrix Ũk has the same dimension as U and that:

U =

n∑
k=1

Ũk. (24)

Eq. 24 implies that we have decomposed our original velocity �uctuations into a sum of n contributions
from n proper orthogonal modes. This is the �nite-dimensional equivalent of the original in�nite-dimensional
POD theorem (Eq. 1) which states that the �uctuating longitudinal velocity �eld u′(x, t) can be decomposed
into a sum of deterministic spatial functions Φk(x) each multiplied by a �uctuating (random) time coe�cient
ak(t), and which is repeated here for clarity:

u′(x, t) =

∞∑
k=1

ak(t)Φk(x). (25)

Here we have used the traditional notation in which ak(t) is the time coe�cient of POD mode Φk. In the
�nite-dimensional case, and with our previous notation, ak(t) is the column vector (a1ka2k . . . amk)T and
Φk(x) is the row vector (φ1kφ2k . . . φnk). Again, in our example there are m = 3580 time coe�cients (one
per snapshot) and n = 5805 spatial points to represent each mode. The orthonormality of the POD modes,
�rst discussed in Eq. 2, translates into Eq. 21 in �nite dimensions: if matrix Φ were not orthogonal (i.e. if
Φ−1 6= ΦT ), it would not be possible to express uij as a sum of the time coe�cients aik times the eigenvectors
φjk.

This is where the notion of dimensionality reduction becomes so powerful. Recall that in our example of
a turbulent separation bubble, about 20% of the TKE in the �ow is accounted for by the �rst POD mode
(Fig. 12). What is this mode doing, physically, to produce 20% of the �uctuations? In fact, we can visualize
the motion that subtends these �uctuations by looking at Ũ1. All we have to do is reorder matrix Ũ1 into
a series of m = 3580 snapshots, add the mean �eld U , and look at the resulting velocity �elds. This is done
in Fig. 13, where it can be seen that in this particular case, since the �rst mode has a global nature, the
motion that it represents is a contraction and expansion of the complete separation bubble. What we have
done here is create a low-order model (LOM) of the longitudinal velocity using only the �rst POD mode.
Now, it is important to realize that this new series of snapshots does not correspond to any real, physical
�ow. It is an approximation that accounts for only 20% of the TKE, the other 80% being accounted for by
the other modes. In e�ect, Fig. 13 is the n-dimensional equivalent of the red curves in Fig. 10.

Figure 13. Low-order model Ũ1 of longitudinal velocity �eld in the turbulent separation bubble with �rst
POD mode at four random instants. The white line delimits the region of mean back�ow.

In this speci�c example, the �rst POD mode is idiosyncratic because it contains a fairly large amount
of energy and because its shape is di�erent than that of the other modes. In a more general setting, model
reduction consists of approximating the complete �uctuating velocity �eld by a low-order model using a
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limited number of POD modes in order to concentrate on the structures responsible for a speci�c portion of
the TKE, viz.

u′(x, t) ' ũ′(x, t) =

k=k2∑
k=k1

ak(t)Φk(x), (26)

or, in matrix terms:

U ' Ũ =

k2∑
k=k1

Ũk. (27)

Model reduction via POD can also be used to generate a set of ordinary di�erential equations (a �nite-
dimensional dynamical system) as a simpli�cation of the partial di�erential equations normally used to
solve �uid-mechanics problems. This is called Galerkin projection but it is out of the scope of the present
document.

In summary, we now show the MATLAB code of the n-dimensional POD as described above. The raw
velocity data is organized as a three-dimensional array S(i, j, k) where the �rst index is the y-position in the
�eld of view, the second is the x-position, and the third is time. This particular way of computing the POD
is called the direct method.

% Create snapshot matrix

Nt = length(S(1,1,:));

S = reshape(permute(S, [3 2 1]), Nt, [ ]); % Reshape data into a matrix S with Nt rows

U = S - repmat(mean(S,1), Nt, 1); % Subtract the temporal mean from each row

% Create covariance matrix

C = (U'*U)/(Nt-1);

% Solve eigenvalue problem

[PHI LAM] = eig(C,'vector');

% Sort eigenvalues and eigenvectors

[lambda,ilam] = sort(LAM,'descend');

PHI = PHI(:, ilam); % These are the spatial modes

% Calculate time coefficients

A = U*PHI;

% Reconstruction on mode k

k = 1; % for example

Utilde_k = A(:,k)*PHI(:,k)';

V. The Snapshot POD

The original POD equation (Eq. 1) is essentially symmetric in t and x since mathematically there is no
fundamental di�erence between the temporal variable t and the spatial variable x. So instead of seeing it as
a decomposition involving deterministic spatial modes and random time coe�cients, we could also see it as
a decomposition in deterministic temporal modes with random spatial coe�cients. In other words, we can
interchange t and x in our algorithm. This is called the snapshot POD and it was originally introduced by
Sirovich [15].

There are two ways to do this. A �rst possibility would be to transpose our snapshot matrix and follow
the same algorithm as in the previous section. In the second, equivalent method, we start with the same
m×n snapshot matrix U as before but we build the correlation matrix Cs = 1

m−1UUT , which is now m×m
instead of the n×n matrix C of the direct method. Recall that m = Nt is the total number of velocity �elds
acquired from the PIV and n = Nx×Ny is the number of spatial velocity points measured in each �eld. Thus,
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Cs is built by averaging in space instead of time.e We then compute the eigenvalues and eigenvectors of Cs

through the command [A_s LAM_s] = eig(C_s) and, as before, we order them from the largest eigenvalue
to the smallest. This time, however, we have performed our decomposition in m-dimensional space and we
now have a set of m eigenvalues and eigenvectors. This means that the m eigenvectors of Cs are temporal
modes that play the same role as the m time coe�cients of the direct method. In order to obtain the spatial
coe�cients, we have to project our velocity data onto the temporal modes by writing Φs = UTAs. Note
that transposition of U is necessary from a dimensional point of view and that we now have only m modes
instead of n. Matrix Φs then contains our m spatial coe�cients (which are equivalent to the spatial modes
of the direct method), ordered from the `strongest' (�rst column) to the `weakest' (last column).

As will be demonstrated below, the eigenvalues obtained from the snapshot method are the same as those
obtained from the direct method. The spatial coe�cients and temporal modes of the snapshot method,
however, di�er from the spatial modes and temporal coe�cients of the direct method by a multiplicative
factor. In the direct method, the spatial modes are orthonormal since they result from the eigendecomposition
of the symmetric matrix C but the time coe�cients are not (in fact, the time coe�cients are only orthogonal
since ATA = (m − 1)Λ, Eq. 13). On the contrary, in the snapshot method, the temporal modes are
orthonormal but not the spatial coe�cients. Thus, if we want to match the results of both methods, we need
to normalize each spatial coe�cient of the snapshot POD and scale the temporal modes accordingly. This
procedure, which ensures that the results of the snapshot POD are equal to those of the direct method, will be
detailed in the example code below.f However, this is not strictly necessary since the original snapshot matrix
U can be reconstructed from the spatial coe�cients and temporal modes obtained before normalization:

Φs = UTAs ⇒ UT = ΦsAs
−1 = ΦsAs

T ⇒ U = AsΦs
T . (28)

Similarly to Eq. 24, we can therefore write

U =

m∑
k=1

Ũk
s , (29)

with

Ũk
s =


(as)1k

(as)2k
...

(as)mk


(

(φs)1k . . . (φs)nk

)
. (30)

Now why would we bother using the snapshot POD instead of the direct method? Simply because it is
often faster to run than the direct algorithm. In most practical cases involving planar or volumetric velocity
data, the number n of spatial measurement points is larger than the number m of snapshots: n > m. This
means that the correlation matrix Cs is smaller and easier to store, and that the corresponding eigenvalue
problem is faster to solve. In the example of the turbulent separation bubble, C has 33.7 million elements
but Cs only has 12.8 million. Furthermore, had we considered both the longitudinal and vertical velocity
components, C would have had 135 million elements but Cs would still only have 12.8 million elements.
The snapshot POD is therefore often used in POD calculations involving PIV or CFD datasets, whereas the
direct method is preferred for measurements with a limited number of single-point probes with high temporal
resolution. On top of this, the results are essentially the same: when m < n, the last n −m eigenvalues of
the direct method are zero and the last n −m modes are irrelevant. Thus, when m 6= n, either procedure
returns min(m,n) modes. While the modes calculated separately by the two methods may have opposite
signs, this is not an issue since the corresponding time coe�cients will also have opposite signs.

To conclude this section, the MATLAB code of the snapshot POD is shown here assuming the same
m× n matrix of snapshots U as before:

% Create correlation matrix

C_s = (U*U')/(Nt-1);

eThe reader might wonder why we de�ne Cs with m− 1 instead of n− 1. This will become clear in the next section.
fSome modes and coe�cients obtained by the two methods may still have opposite sign but this is not an issue since the

velocity data is recovered when both are multiplied by one another.
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% Solve eigenvalue problem

[A_s LAM_s] = eig(C_s,'vector');

% Sort eigenvalues and eigenvectors

[lambda_s,ilam_s] = sort(LAM_s,'descend');

A_s = A_s(:, ilam_s); % These are the temporal modes

% Calculate spatial coefficients

PHI_s = U'*A_s;

% Reconstruction on mode k

k = 1; % for example

Utilde_k_s = A_s(:,k)*PHI_s(:,k)';

% Normalization to match direct and snapshot modes (optional)

PHI = normc(PHI_s); % Spatial modes

A = U*PHI; % Time coefficients

Utilde_k = A(:,k)*PHI(:,k)'; % Reconstruction on mode k

VI. The Singular Value Decomposition

The reason why both direct POD and snapshot POD lead to equivalent results is that both methods are
closely related to the singular value decomposition (SVD) of the snapshot matrix U. The SVD is a matrix
decomposition that factorizes a real m× n matrix U into

U = LΣRT , (31)

where L is an m × m orthogonal matrix, Σ is an m × n rectangular diagonal matrix and R is an n × n
orthogonal matrix [12]. The non-zero diagonal elements of Σ are typically a set of r = min(m,n) positive
numbers arranged in decreasing order, i.e. σ1 ≥ σ2 ≥ . . . ≥ σr ≥ 0. These are called the singular values
of U. Essentially, the SVD is a procedure that will diagonalize any rectangular matrix, whereas eigenvalue
decomposition only works for square matrices.

What is the connection between SVD and POD? To see this, let us compute the matrices C and Cs in
light of the SVD. We have

C =
1

m− 1

(
UTU

)
=

1

m− 1

((
LΣRT

)T (
LΣRT

))
=

1

m− 1

(
RΣTLTLΣRT

)
=

1

m− 1

(
R
(
ΣTΣ

)
RT
)

(32)

and similarly

Cs =
1

m− 1

(
UUT

)
=

1

m− 1

((
LΣRT

) (
LΣRT

)T)
=

1

m− 1

(
LΣRTRΣTLT

)
=

1

m− 1

(
L
(
ΣΣT

)
LT
)
. (33)
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Let us �rst notice that ΣTΣ is an n × n diagonal matrix, that ΣΣT is an m ×m diagonal matrix and
that the non-zero diagonal elements of these two matrices are exactly the same, namely the squares of the
r singular values of U. Furthermore, if we compare Eq. 32 with Eq. 11, we see that Λ = ΣTΣ/(m− 1) and
that the matrix Φ (the eigenvectors of C) is equal to the matrix R. Similarly, comparing Eq. 33 with the
snapshot POD algorithm shows that Λs = ΣΣT /(m− 1) and that As = L. In other words, the eigenvalues
λi of C and Cs are both equal to σ2

i /(m− 1). g

Therefore, both POD algorithms are equivalent to the SVD of matrix U/
√
m− 1: the spatial modes of

the direct POD are given by its right singular vectors R, the temporal modes of the snapshot POD are given
by its left singular vectors L and the eigenvalues of both methods are the squares of its singular values. To
be consistent with the direct POD algorithm, it is common to keep the spatial modes as-is and to rescale
the temporal modes into the time coe�cients of the direct method, as was done for the snapshot POD. Note
also that in some POD algorithms, the factor m− 1 is simply omitted since it only amounts to a scaling of
the results.

In MATLAB, the SVD is run by the simple command: [L,SIG,R] = svd(U). Our �nal POD algorithm
is then programmed with the following few lines of code:

% Singular value decomposition

[L,SIG,R] = svd(U/sqrt(Nt-1));

PHI = R; % PHI are the spatial modes

A = U*PHI; % A are the time coefficients

lambda = diag(SIG).^2; % lambda are the eigenvalues

So what is the best algorithm to choose from? Clearly the SVD is most economical in terms of lines of
code. However, depending on the dimensions of matrix U, the snapshot POD is often much faster. This
is because the SVD algorithm still needs to compute the n × n matrix UTU to obtain its eigenvectors R.
Therefore, for most applications in experimental or numerical �uid dynamics (where n > m), the snapshot
POD is the method of choice. In fact, the snapshot POD was speci�cally developed by Sirovich to speed up
the computation algorithmically [15].

VII. Physical Interpretation of POD Modes

Wouldn't it be nice if the POD modes were a direct spatial representation of coherent structures in the
�ow? This was probably the original idea behind the introduction of POD in �uid dynamics. Unfortunately,
this is generally not the case. Remember from our 2D example that the spatial modes are a measure of how
the velocity is correlated at di�erent points in the �ow. While a zone of correlation can indeed represent a
`coherent structure' � especially when the corresponding energy is dominant compared to the other modes,
in other words when the ellipsoid representing the data is `shallow' � there are many POD modes that add
up to the complete �ow when multiplied by their time coe�cients (Eq. 1). Some of these zones of correlation
appear randomly often due to the turbulent nature of most practical �ows, which means that these modes
are simply a manifestation of the randomness of turbulence.

Nevertheless, the POD can be very useful because it enables us to reconstruct a �ow with only a few
of the most energetic modes in order to educe motions that are sometimes not easily spotted in the raw
data. In the example of the turbulent separation bubble above, we saw by visualizing Ũ1 that the �rst
mode represents a contraction and expansion of the bubble. This is interesting for two reasons, �rst because
this motion cannot easily be observed on the original data U due to the many scales of turbulence that are
superimposed on it, and second because this motion is connected to a fairly large portion (20%) of the TKE,
so we expect it to be an important practical characteristic of the �ow.

gThis is precisely why we have normalized Cs with m− 1 in the snapshot POD. If n− 1 had been used, as might have been
expected, the eigenvalues of the snapshot method would not have been equal to those of the direct method.
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Figure 14. Snapshot of the �ow �eld around a circular cylinder at ReD = 100 [16].
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Figure 15. Contribution of the 10 �rst eigenvalues to the TKE for the 2D cylinder case.

Figure 16. POD modes 1 and 2 for the 2D cylinder case. The color contours indicate the magnitude of the
vertical velocity component.
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Figure 17. Time coe�cients of the �rst 2 POD modes for the 2D cylinder case.

Figure 18. Phase portrait of the �rst 2 POD modes for the 2D cylinder case.

The POD may also be used to illustrate the convection of vortical structures. Fig. 14 shows a particular
snapshot of the �ow around a circular cylinder at a Reynolds number ReD = 100. This data, obtained by
numerical solution of the two-dimensional Navier-Stokes equations and made publicly available by Kutz et
al. [16], shows the typical von Kármán street of alternating vortices in its wake. One hundred and �fty of
these snapshots, sampled at regular time intervals on a 450×200 grid, are now used to compute the snapshot
POD. Both the longitudinal and vertical velocity components are considered in the POD, which results in a
matrix U containing 150 rows and 450× 200× 2 = 180000 columns.

The contribution of the �rst 10 eigenvalues to the TKE (the `POD spectrum') is shown in Fig. 15, where
it can be seen that the �rst and second modes are largely dominant and contribute to about 50% and 45% of
the kinetic energy, respectively. The two �rst spatial modes, Φ1 and Φ2 (the �rst two columns of matrix Φ),
are plotted in Fig. 16. Clearly, both modes show the presence of structures resembling vortices in the �ow,
which is expected given the predominance of actual vortices in the cylinder's wake. Another interesting point
is that mode 2 appears to be almost exactly the same as mode 1, except for a translation of approximately
a quarter of a wavelength. The e�ect of this translation becomes apparent if we look at the time coe�cients
a1(t) and a2(t) of these modes (the �rst 2 columns of matrix A), which are shown in Fig. 17. These are
nearly sinusoidal and o�set by a quarter of a period. Because of these o�sets, when the two �rst spatial
modes are combined with their time coe�cients and added together, they reproduce the translating and
alternating character of the vortices in the wake. In fact, to show that a pair of POD modes illustrate a
periodic phenomenon, it is common to plot a phase portrait consisting of one time coe�cient as a function
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of the other. This phase portrait then forms a circular ring, as shown in Fig. 18 for the case of our cylinder
wake �ow. Treating the plane of Fig. 18 as a the complex plane, we clearly have ‖a1(t) + ia2(t)‖ = const,
which implies that a1 = rcos(θ) and a2 = rsin(θ), with r a constant and θ the phase angle of the oscillation.
This property can for example be used to obtain the phase information of a periodic �ow without performing
any time-resolved measurement (e.g., [17]).

In the cylinder example, given that the �rst two modes account for more than 90% of the total kinetic
energy, they are enough to reproduce the original �ow quite accurately. In e�ect, in this particular case, a
low-order model containing only the �rst two POD modes is a very good approximation of the original �ow.
However, the cylinder example may be seen as `too simple' since coherent vortices are readily observed in
the original snapshots. In fact, this is precisely why only two modes are su�cient to reproduce the salient
features of the �ow. In a more complex, possibly turbulent �ow, many modes are generally necessary to
account for 90% of the TKE and their interpretation is generally far from trivial. Nevertheless, the arguments
used for the cylinder may be used for other �ows as well. Looking back at Fig. 11, we see that the second
and third modes in the TSB show the same general features, albeit to a lesser extent, as the �rst and second
modes of the cylinder. Therefore, it is reasonable to expect convection of structures in the TSB as well.
Indeed, while a low-order model of the TSB �ow containing only modes 2 and 3 does indeed show some signs
of convected structures, it is certainly not su�cient to reproduce realistic �ow dynamics.

Generally speaking, the interpretation of POD modes is facilitated when a few of them account to a large
portion of the TKE. This is similar to looking at peaks in a Fourier power spectrum, for example, except
that the POD spectrum is necessarily decreasing and that the most dominant modes are the �rst ones by
construction. Nevertheless, one should remain cautious in one's physical interpretation of the modes since
they are nothing more than mathematical objects illustrating spatial zones of correlation.

Finally, it should be mentioned that POD doesn't necessarily have to be applied to velocity �elds. In
some instances, another variable, like the vorticity �eld in a �ow or the greyscale level of schlieren images
(for example) might be better suited to describe the data, or easier to acquire. The algorithms described
above can be used directly once a relevant snapshot matrix is constructed. In the case of the vorticity, for
example, the POD algorithms will maximize the enstrophy instead of the kinetic energy in order to create
proper orthogonal modes of the vorticity �eld.

VIII. Conclusion

Because of the now ubiquitous availability of planar or volumetric velocity databases, the POD has become
a classical tool in experimental and numerical �uid dynamics. Nevertheless, the method still appears to be
surrounded by an aura of mystery for the non-specialist. I believe that this is because most texts describe it
in terms of abstract functional spaces, which are not part of the usual mathematical toolbox of mechanical
and aerospace engineers. In this tutorial, I have tried to demistify the POD by approaching it in the �nite-
dimensional case, and by restricting the analysis to a separation of variables in terms of space and time.
The POD was also �rst illustrated with a 2D example, as is common in the �eld of statistics for existing
tutorials on Principal Component Analysis, e.g. [8, 10]. I believe that this is useful to visualize the di�erent
projections that occur in the POD algorithm. While this approach might be seen as too restrictive or too
simplistic for the specialist, I hope that it will be useful for students and researchers interested in learning
about the method for applications in experimental or numerical �uid dynamics.
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