4,266 research outputs found

    Wide-angle, circularly polarized, omnidirectional-array antenna

    Get PDF
    Modified conventional turnstile antenna features bifoliate pattern with relatively high gain and good circularity over solid area enclosed by the 0.26 and 1.31 radian angles of elevation. These antennas are intended for high altitude balloon use, their permissible weight is restricted to one pound

    GCR access to the Moon as measured by the CRaTER instrument on LRO

    Get PDF
    [1] Recent modeling efforts have yielded varying and conflicting results regarding the possibility that Earth\u27s magnetosphere is able to shield energetic particles of \u3e10 MeV at lunar distances. This population of particles consists of galactic cosmic rays as well as energetic particles that are accelerated by solar flares and coronal mass ejections. The Cosmic Ray Telescope for the Effects of Radiation (CRaTER) onboard the Lunar Reconnaissance Orbiter is in orbit about the Moon and is thus able to directly test these modeling results. Over the course of a month, CRaTER samples the upstream solar wind as well as various regions of Earth\u27s magnetotail. CRaTER data from multiple lunations demonstrate that Earth\u27s magnetosphere at lunar distances produces no measurable influence on energetic particle flux, even at the lowest energies (\u3e14 MeV protons) where any effect should be maximized. For particles with energies of 14–30 MeV, we calculate an upper limit (determined by counting statistics) on the amount of shielding caused by the magnetosphere of 1.7%. The high energy channel (\u3e500 MeV) provides an upper limit of 3.2%

    The radiation environment near the lunar surface: CRaTER observations and Geant4 simulations

    Get PDF
    [1] At the start of the Lunar Reconnaissance Orbiter mission in 2009, its Cosmic Ray Telescope for the Effects of Radiation instrument measured the radiation environment near the Moon during the recent deep solar minimum, when galactic cosmic rays (GCRs) were at the highest level observed during the space age. We present observations that show the combined effects of GCR primaries, secondary particles (“albedo”) created by the interaction of GCRs with the lunar surface, and the interactions of these particles in the shielding material overlying the silicon solid-state detectors of the Cosmic Ray Telescope for the Effects of Radiation. We use Geant4 to model the energy and angular distribution of the albedo particles, and to model the response of the sensor to the various particle species reaching the 50 kilometer altitude of the Lunar Reconnaissance Orbiter. Using simulations to gain insight into the observations, we are able to present preliminary energy-deposit spectra for evaluation of the radiation environment\u27s effects on other sensitive materials, whether biological or electronic, that would be exposed to a similar near-lunar environment

    New measurements of total ionizing dose in the lunar environment

    Get PDF
    [1] We report new measurements of solar minimum ionizing radiation dose at the Moon onboard the Lunar Reconnaissance Orbiter (LRO) from June 2009 through May 2010. The Cosmic Ray Telescope for the Effects of Radiation (CRaTER) instrument on LRO houses a compact and highly precise microdosimeter whose design allows measurements of dose rates below 1 micro-Rad per second in silicon achieved with minimal resources (20 g, ∼250 milliwatts, and ∼3 bits/second). We envision the use of such a small yet accurate dosimeter in many future spaceflight applications where volume, mass, and power are highly constrained. As this was the first operation of the microdosimeter in a space environment, the goal of this study is to verify its response by using simultaneous measurements of the galactic cosmic ray ionizing environment at LRO, at L1, and with other concurrent dosimeter measurements and model predictions. The microdosimeter measured the same short timescale modulations in the galactic cosmic rays as the other independent measurements, thus verifying its response to a known source of minimum-ionizing particles. The total dose for the LRO mission over the first 333 days was only 12.2 Rads behind ∼130 mils of aluminum because of the delayed rise of solar activity in solar cycle 24 and the corresponding lack of intense solar energetic particle events. The dose rate in a 50 km lunar orbit was about 30 percent lower than the interplanetary rate, as one would expect from lunar obstruction of the visible sky

    The first cosmic ray albedo proton map of the Moon

    Get PDF
    [1] Neutrons emitted from the Moon are produced by the impact of galactic cosmic rays (GCRs) within the regolith. GCRs are high-energy particles capable of smashing atomic nuclei in the lunar regolith and producing a shower of energetic protons, neutrons and other subatomic particles. Secondary particles that are ejected out of the regolith become “albedo” particles. The neutron albedo has been used to study the hydrogen content of the lunar regolith, which motivates our study of albedo protons. In principle, the albedo protons should vary as a function of the input GCR source and possibly as a result of surface composition and properties. During the LRO mission, the total detection rate of albedo protons between 60 MeV and 150 MeV has been declining since 2009 in parallel with the decline in the galactic cosmic ray flux, which validates the concept of an albedo proton source. On the other hand, the average yield of albedo protons has been increasing as the galactic cosmic ray spectrum has been hardening, consistent with a disproportionately stronger modulation of lower energy GCRs as solar activity increases. We construct the first map of the normalized albedo proton emission rate from the lunar surface to look for any albedo variation that correlates with surface features. The map is consistent with a spatially uniform albedo proton yield to within statistical uncertainties

    Comparative analysis of rigidity across protein families

    Get PDF
    We present a comparative study in which 'pebble game' rigidity analysis is applied to multiple protein crystal structures, for each of six different protein families. We find that the main-chain rigidity of a protein structure at a given hydrogen bond energy cutoff is quite sensitive to small structural variations, and conclude that the hydrogen bond constraints in rigidity analysis should be chosen so as to form and test specific hypotheses about the rigidity of a particular protein. Our comparative approach highlights two different characteristic patterns ('sudden' or 'gradual') for protein rigidity loss as constraints are removed, in line with recent results on the rigidity transitions of glassy networks

    Measurements of galactic cosmic ray shielding with the CRaTER instrument

    Get PDF
    [1] The Cosmic Ray Telescope for the Effects of Radiation (CRaTER) instrument aboard the Lunar Reconnaissance Orbiter has been measuring energetic charged particles from the galactic cosmic rays (GCRs) and solar particle events in lunar orbit since 2009. CRaTER includes three pairs of silicon detectors, separated by pieces of tissue-equivalent plastic that shield two of the three pairs from particles incident at the zenith-facing end of the telescope. Heavy-ion beams studied in previous ground-based work have been shown to be reasonable proxies for the GCRs when their energies are sufficiently high. That work, which included GCR simulations, led to predictions for the amount of dose reduction that would be observed by CRaTER. Those predictions are compared to flight data obtained by CRaTER in 2010–2011

    Record-setting Cosmic-ray Intensities in 2009 and 2010

    Get PDF
    We report measurements of record-setting intensities of cosmic-ray nuclei from C to Fe, made with the Cosmic Ray Isotope Spectrometer carried on the Advanced Composition Explorer in orbit about the inner Sun-Earth Lagrangian point. In the energy interval from ~70 to ~450 MeV nucleon^(–1), near the peak in the near-Earth cosmic-ray spectrum, the measured intensities of major species from C to Fe were each 20%-26% greater in late 2009 than in the 1997-1998 minimum and previous solar minima of the space age (1957-1997). The elevated intensities reported here and also at neutron monitor energies were undoubtedly due to several unusual aspects of the solar cycle 23/24 minimum, including record-low interplanetary magnetic field (IMF) intensities, an extended period of reduced IMF turbulence, reduced solar-wind dynamic pressure, and extremely low solar activity during an extended solar minimum. The estimated parallel diffusion coefficient for cosmic-ray transport based on measured solar-wind properties was 44% greater in 2009 than in the 1997-1998 solar-minimum period. In addition, the weaker IMF should result in higher cosmic-ray drift velocities. Cosmic-ray intensity variations at 1 AU are found to lag IMF variations by 2-3 solar rotations, indicating that significant solar modulation occurs inside ~20 AU, consistent with earlier galactic cosmic-ray radial-gradient measurements. In 2010, the intensities suddenly decreased to 1997 levels following increases in solar activity and in the inclination of the heliospheric current sheet. We describe the conditions that gave cosmic rays greater access to the inner solar system and discuss some of their implications

    Lunar radiation environment and space weathering from the Cosmic Ray Telescope for the Effects of Radiation (CRaTER)

    Get PDF
    [1] The Cosmic Ray Telescope for the Effects of Radiation (CRaTER) measures linear energy transfer by Galactic Cosmic Rays (GCRs) and Solar Energetic Particles (SEPs) on the Lunar Reconnaissance Orbiter (LRO) Mission in a circular, polar lunar orbit. GCR fluxes remain at the highest levels ever observed during the space age. One of the largest SEP events observed by CRaTER during the LRO mission occurred on June 7, 2011. We compare model predictions by the Earth-Moon-Mars Radiation Environment Module (EMMREM) for both dose rates from GCRs and SEPs during this event with results from CRaTER. We find agreement between these models and the CRaTER dose rates, which together demonstrate the accuracy of EMMREM, and its suitability for a real-time space weather system. We utilize CRaTER to test forecasts made by the Relativistic Electron Alert System for Exploration (REleASE), which successfully predicts the June 7th event. At the maximum CRaTER-observed GCR dose rate (∼11.7 cGy/yr where Gy is a unit indicating energy deposition per unit mass, 1 Gy = 1 J/kg), GCRs deposit ∼88 eV/molecule in water over 4 billion years, causing significant change in molecular composition and physical structure (e.g., density, color, crystallinity) of water ice, loss of molecular hydrogen, and production of more complex molecules linking carbon and other elements in the irradiated ice. This shows that space weathering by GCRs may be extremely important for chemical evolution of ice on the Moon. Thus, we show comprehensive observations from the CRaTER instrument on the Lunar Reconnaissance Orbiter that characterizes the radiation environment and space weathering on the Moon
    corecore