90 research outputs found

    Conserved presence of G-quadruplex forming sequences in the Long Terminal Repeat Promoter of Lentiviruses

    Get PDF
    G-quadruplexes (G4s) are secondary structures of nucleic acids that epigenetically regulate cellular processes. In the human immunodeficiency lentivirus 1 (HIV-1), dynamic G4s are located in the unique viral LTR promoter. Folding of HIV-1 LTR G4s inhibits viral transcription; stabilization by G4 ligands intensifies this effect. Cellular proteins modulate viral transcription by inducing/unfolding LTR G4s. We here expanded our investigation on the presence of LTR G4s to all lentiviruses. G4s in the 5'-LTR U3 region were completely conserved in primate lentiviruses. A G4 was also present in a cattle-infecting lentivirus. All other non-primate lentiviruses displayed hints of less stable G4s. In primate lentiviruses, the possibility to fold into G4s was highly conserved among strains. LTR G4 sequences were very similar among phylogenetically related primate viruses, while they increasingly differed in viruses that diverged early from a common ancestor. A strong correlation between primate lentivirus LTR G4s and Sp1/NF\u3baB binding sites was found. All LTR G4s folded: their complexity was assessed by polymerase stop assay. Our data support a role of the lentiviruses 5'-LTR G4 region as control centre of viral transcription, where folding/unfolding of G4s and multiple recruitment of factors based on both sequence and structure may take place

    In Heart Failure Patients with Left Bundle Branch Block Single Lead MultiSpot Left Ventricular Pacing Does Not Improve Acute Hemodynamic Response To Conventional Biventricular Pacing. A Multicenter Prospective, Interventional, Non-Randomized Study.

    Get PDF
    Introduction Recent efforts to increase CRT response by multiSPOT pacing (MSP) from multiple bipols on the same left ventricular lead are still inconclusive. Aim The Left Ventricular (LV) MultiSPOTpacing for CRT (iSPOT) study compared the acute hemodynamic response of MSP pacing by using 3 electrodes on a quadripolar lead compared with conventional biventricular pacing (BiV). Methods Patients with left bundle branch block (LBBB) underwent an acute hemodynamic study to determine the %change in LV+dP/dtmax from baseline atrial pacing compared to the following configurations: BiV pacing with the LV lead in a one of lateral veins, while pacing from the distal, mid, or proximal electrode and all 3 electrodes together (i.e. MSP). All measurements were repeated 4 times at 5 different atrioventricular delays. We also measured QRS-width and individual Q-LV durations. Results Protocol was completed in 24 patients, all with LBBB (QRS width 171±20 ms) and 58% ischemic aetiology. The percentage change in LV+dP/dtmax for MSP pacing was 31.0±3.3% (Mean±SE), which was not significantly superior to any BiV pacing configuration: 28.9±3.2% (LV-distal), 28.3±2.7% (LV-mid), and 29.5±3.0% (LV-prox), respectively. Correlation between LV+dP/dtmax and either QRS-width or Q-LV ratio was poor. Conclusions In patients with LBBB MultiSPOT LV pacing demonstrated comparable improvement in contractility to best conventional BiV pacing. Optimization of atrioventricular delay is important for the best performance for both BiV and MultiSPOT pacing configurations. Trial Registration ClinicalTrials.gov NTC0188314

    HIV-1 recombinants with multiple parental strains in low-prevalence, remote regions of Cameroon: Evolutionary relics?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The HIV pandemic disseminated globally from Central West Africa, beginning in the second half of the twentieth century. To elucidate the virologic origins of the pandemic, a cross-sectional study was conducted of the genetic diversity of HIV-1 strains in villagers in 14 remote locations in Cameroon and in hospitalized and STI patients. DNA extracted from PBMC was PCR amplified from HIV(+) subjects. Partial <it>pol </it>amplicons (N = 164) and nearly full virus genomes (N = 78) were sequenced. Among the 3956 rural villagers studied, the prevalence of HIV infection was 4.9%; among the hospitalized and clinic patients, it was 8.6%.</p> <p>Results</p> <p>Virus genotypes fell into two distinctive groups. A majority of the genotyped strains (109/164) were the circulating recombinant form (CRF) known to be endemic in West Africa and Central West Africa, CRF02_AG. The second most common genetic form (9/164) was the recently described CRF22_01A1, and the rest were a collection of 4 different subtypes (A2, D, F2, G) and 6 different CRFs (-01, -11, -13, -18, -25, -37). Remarkably, 10.4% of HIV-1 genomes detected (17/164) were heretofore undescribed unique recombinant forms (URF) present in only a single person. Nearly full genome sequencing was completed for 78 of the viruses of interest. HIV genetic diversity was commonplace in rural villages: 12 villages each had at least one newly detected URF, and 9 villages had two or more.</p> <p>Conclusions</p> <p>These results show that while CRF02_AG dominated the HIV strains in the rural villages, the remainder of the viruses had tremendous genetic diversity. Between the trans-species transmission of SIV<sub>cpz </sub>and the dispersal of pandemic HIV-1, there was a time when we hypothesize that nascent HIV-1 was spreading, but only to a limited extent, recombining with other local HIV-1, creating a large variety of recombinants. When one of those recombinants began to spread widely (i.e. became epidemic), it was recognized as a subtype. We hypothesize that the viruses in these remote Cameroon villages may represent that pre-epidemic stage of viral evolution.</p

    Human immunodeficiency virus: 25 years of diagnostic and therapeutic strategies and their impact on hepatitis B and C virus

    Get PDF
    The human immunodeficiency virus (HIV) had spread unrecognized in the human population as sexually transmitted disease and was finally identified by its disease AIDS in 1981. Even after the isolation of the causative agent in 1983, the burden and death rate of AIDS accelerated worldwide especially in young people despite the confection of new drugs capable to inhibit virus replication since 1997. However, at least in industrialised countries, this trend could be reversed by the introduction of combination therapy strategies. The design of new drugs is on going; besides the inhibition of the three enzymes of HIV for replication and maturation (reverse transcriptase, integrase and protease), further drugs inhibits fusion of viral and cellular membranes and virus maturation. On the other hand, viral diagnostics had been considerably improved since the emergence of HIV. There was a need to identify infected people correctly, to follow up the course of immune reconstitution of patients by measuring viral load and CD4 cells, and to analyse drug escape mutations leading to drug resistance. Both the development of drugs and the refined diagnostics have been transferred to the treatment of patients infected with hepatitis B virus (HBV) and hepatitis C virus (HCV). This progress is not completed; there are beneficial aspects in the response of the scientific community to the HIV burden for the management of other viral diseases. These aspects are described in this contribution. Further aspects as handling a stigmatising disease, education of self-responsiveness within sexual relationships, and ways for confection of a protective vaccine are not covered

    Mutation of a Single Residue Renders Human Tetherin Resistant to HIV-1 Vpu-Mediated Depletion

    Get PDF
    The recently identified restriction factor tetherin/BST-2/CD317 is an interferon-inducible trans-membrane protein that restricts HIV-1 particle release in the absence of the HIV-1 countermeasure viral protein U (Vpu). It is known that Tantalus monkey CV1 cells can be rendered non-permissive to HIV-1 release upon stimulation with type 1 interferon, despite the presence of Vpu, suggesting species-specific sensitivity of tetherin proteins to viral countermeasures such as Vpu. Here we demonstrate that Tantalus monkey tetherin restricts HIV-1 by nearly two orders of magnitude, but in contrast to human tetherin the Tantalus protein is insensitive to HIV-1 Vpu. We have investigated tetherin's sensitivity to Vpu using positive selection analyses, seeking evidence for evolutionary conflict between tetherin and viral countermeasures. We provide evidence that tetherin has undergone positive selection during primate evolution. Mutation of a single amino acid (showing evidence of positive selection) in the trans-membrane cap of human tetherin to that in Tantalus monkey (T45I) substantially impacts on sensitivity to HIV-1 Vpu, but not on antiviral activity. Finally, we provide evidence that cellular steady state levels of tetherin are substantially reduced by Vpu, and that the T45I mutation abrogates this effect. This study provides evidence that tetherin is important in protecting mammals against viral infection, and that the HIV-1 Vpu–mediated countermeasure is specifically adapted to act against human tetherin. It also emphasizes the power of selection analyses to illuminate the molecular details of host–virus interactions. This work suggests that tetherin binding agents might protect it from viral encoded countermeasures and thus make powerful antivirals

    A New Malaria Agent in African Hominids

    Get PDF
    Plasmodium falciparum is the major human malaria agent responsible for 200 to 300 million infections and one to three million deaths annually, mainly among African infants. The origin and evolution of this pathogen within the human lineage is still unresolved. A single species, P. reichenowi, which infects chimpanzees, is known to be a close sister lineage of P. falciparum. Here we report the discovery of a new Plasmodium species infecting Hominids. This new species has been isolated in two chimpanzees (Pan troglodytes) kept as pets by villagers in Gabon (Africa). Analysis of its complete mitochondrial genome (5529 nucleotides including Cyt b, Cox I and Cox III genes) reveals an older divergence of this lineage from the clade that includes P. falciparum and P. reichenowi (∼21±9 Myrs ago using Bayesian methods and considering that the divergence between P. falciparum and P. reichenowi occurred 4 to 7 million years ago as generally considered in the literature). This time frame would be congruent with the radiation of hominoids, suggesting that this Plasmodium lineage might have been present in early hominoids and that they may both have experienced a simultaneous diversification. Investigation of the nuclear genome of this new species will further the understanding of the genetic adaptations of P. falciparum to humans. The risk of transfer and emergence of this new species in humans must be now seriously considered given that it was found in two chimpanzees living in contact with humans and its close relatedness to the most virulent agent of malaria

    Tracing the origins of rescued chimpanzees reveals widespread chimpanzee hunting in Cameroon

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>While wild chimpanzees are experiencing drastic population declines, their numbers at African rescue and rehabilitation projects are growing rapidly. Chimpanzees follow complex routes to these refuges; and their geographic origins are often unclear. Identifying areas where hunting occurs can help law enforcement authorities focus scarce resources for wildlife protection planning. Efficiently focusing these resources is particularly important in Cameroon because this country is a key transportation waypoint for international wildlife crime syndicates. Furthermore, Cameroon is home to two chimpanzee subspecies, which makes ascertaining the origins of these chimpanzees important for reintroduction planning and for scientific investigations involving these chimpanzees.</p> <p>Results</p> <p>We estimated geographic origins of 46 chimpanzees from the Limbe Wildlife Centre (LWC) in Cameroon. Using Bayesian approximation methods, we determined their origins using mtDNA sequences and microsatellite (STRP) genotypes compared to a spatial map of georeferenced chimpanzee samples from 10 locations spanning Cameroon and Nigeria. The LWC chimpanzees come from multiple regions of Cameroon or forested areas straddling the Cameroon-Nigeria border. The LWC chimpanzees were partitioned further as originating from one of three biogeographically important zones occurring in Cameroon, but we were unable to refine these origin estimates to more specific areas within these three zones.</p> <p>Conclusions</p> <p>Our findings suggest that chimpanzee hunting is widespread across Cameroon. Live animal smuggling appears to occur locally within Cameroon, despite the existence of local wildlife cartels that operate internationally. This pattern varies from the illegal wildlife trade patterns observed in other commercially valuable species, such as elephants, where specific populations are targeted for exploitation. A broader sample of rescued chimpanzees compared against a more comprehensive grid of georeferenced samples may reveal 'hotspots' of chimpanzee hunting and live animal transport routes in Cameroon. These results illustrate also that clarifying the origins of refuge chimpanzees is an important tool for designing reintroduction programs. Finally, chimpanzees at refuges are frequently used in scientific investigations, such as studies investigating the history of zoonotic diseases. Our results provide important new information for interpreting these studies within a precise geographical framework.</p

    Impact of Simian Immunodeficiency Virus Infection on Chimpanzee Population Dynamics

    Get PDF
    Like human immunodeficiency virus type 1 (HIV-1), simian immunodeficiency virus of chimpanzees (SIVcpz) can cause CD4+ T cell loss and premature death. Here, we used molecular surveillance tools and mathematical modeling to estimate the impact of SIVcpz infection on chimpanzee population dynamics. Habituated (Mitumba and Kasekela) and non-habituated (Kalande) chimpanzees were studied in Gombe National Park, Tanzania. Ape population sizes were determined from demographic records (Mitumba and Kasekela) or individual sightings and genotyping (Kalande), while SIVcpz prevalence rates were monitored using non-invasive methods. Between 2002–2009, the Mitumba and Kasekela communities experienced mean annual growth rates of 1.9% and 2.4%, respectively, while Kalande chimpanzees suffered a significant decline, with a mean growth rate of −6.5% to −7.4%, depending on population estimates. A rapid decline in Kalande was first noted in the 1990s and originally attributed to poaching and reduced food sources. However, between 2002–2009, we found a mean SIVcpz prevalence in Kalande of 46.1%, which was almost four times higher than the prevalence in Mitumba (12.7%) and Kasekela (12.1%). To explore whether SIVcpz contributed to the Kalande decline, we used empirically determined SIVcpz transmission probabilities as well as chimpanzee mortality, mating and migration data to model the effect of viral pathogenicity on chimpanzee population growth. Deterministic calculations indicated that a prevalence of greater than 3.4% would result in negative growth and eventual population extinction, even using conservative mortality estimates. However, stochastic models revealed that in representative populations, SIVcpz, and not its host species, frequently went extinct. High SIVcpz transmission probability and excess mortality reduced population persistence, while intercommunity migration often rescued infected communities, even when immigrating females had a chance of being SIVcpz infected. Together, these results suggest that the decline of the Kalande community was caused, at least in part, by high levels of SIVcpz infection. However, population extinction is not an inevitable consequence of SIVcpz infection, but depends on additional variables, such as migration, that promote survival. These findings are consistent with the uneven distribution of SIVcpz throughout central Africa and explain how chimpanzees in Gombe and elsewhere can be at equipoise with this pathogen
    corecore