35 research outputs found

    Epigenetic regulator MLL2 shows altered expression in cancer cell lines and tumors from human breast and colon

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MLL2, an epigenetic regulator in mammalian cells, mediates histone 3 lysine 4 tri-methylation (H3K4me3) through the formation of a multiprotein complex. MLL2 shares a high degree of structural similarity with MLL, which is frequently disrupted in leukemias via chromosomal translocations. However, this structural similarity is not accompanied by functional equivalence. In light of this difference, and previous reports on involvement of epigenetic regulators in malignancies, we investigated MLL2 expression in established cell lines from breast and colon tissues. We then investigated MLL2 in solid tumors of breast and colon by immunohistochemistry, and evaluated potential associations with established clinicopathologic variables.</p> <p>Results</p> <p>We examined MLL2 at both transcript and protein levels in established cell lines from breast and colon cancers. Examination of these cell lines showed elevated levels of MLL2. Furthermore, we also identified incomplete proteolytic cleavage of MLL2 in the highly invasive tumor cell lines. To corroborate these results, we studied tumor tissues from patients by immunohistochemistry. Patient samples also revealed increased levels of MLL2 protein in invasive carcinomas of the breast and colon. In breast, cytoplasmic MLL2 was significantly increased in tumor tissues compared to adjacent benign epithelium (p < 0.05), and in colon, both nuclear and cytoplasmic immunostaining was significantly increased in tumor tissues compared to adjacent benign mucosa (p < 0.05).</p> <p>Conclusion</p> <p>Our study indicates that elevated levels of MLL2 in the breast and colon cells are associated with malignancy in these tissues, in contrast to MLL involvement in haematopoietic cancer. In addition, both abnormal cellular localization of MLL2 and incomplete proteolytic processing may be associated with tumor growth/progression in breast and colonic tissues. This involvement of MLL2 in malignancy may be another example of the role of epigenetic regulators in cancer.</p

    Non-steroidal anti-inflammatory drugs (NSAIDs) and breast cancer risk: differences by molecular subtype.

    Get PDF
    Use of non-steroidal anti-inflammatory drugs (NSAIDs) has been associated with reduced risk of breast cancer, though findings have been inconsistent. This inconsistency may result from differences in etiology for breast tumors of different subtypes. We examined the association between NSAID use and breast cancer characterized by molecular subtypes in a population-based case-control study in Western New York. Cases (n = 1,170) were women with incident, primary, histologically confirmed breast cancer. Controls (n = 2,115) were randomly selected from NY Department of Motor Vehicles records (<65 years) or Medicare rolls (β‰₯ 65 years). Participants answered questions regarding their use of aspirin and ibuprofen in the year prior to interview and their use of aspirin throughout their adult life. Logistic regression models estimated odds ratios (OR) and 95% confidence intervals (95% CI). Recent and lifetime aspirin use was associated with reduced risk, with no differences by subtype. Recent use of ibuprofen was significantly associated with increased risk of ER+/PR+(OR 1.33, 95% CI: 1.09-1.62), HER2- (OR 1.27, 95% CI: 1.05-1.53), and p53- breast cancers (OR 1.28, 95% CI: 1.04-1.57), as well as luminal A or B breast cancers. These findings support the hypothesis of heterogeneous etiologies of breast cancer subtypes and that aspirin and ibuprofen vary in their effects

    Identification of TNF-Ξ± and MMP-9 as potential baseline predictive serum markers of sunitinib activity in patients with renal cell carcinoma using a human cytokine array

    Get PDF
    BACKGROUND: Several drugs are available to treat metastatic renal-cell carcinoma (MRCC), and predictive markers to identify the most adequate treatment for each patient are needed. Our objective was to identify potential predictive markers of sunitinib activity in MRCC. METHODS: We collected sequential serum samples from 31 patients treated with sunitinib. Sera of six patients with extreme phenotypes of either marked responses or clear progressions were analysed with a Human Cytokine Array which evaluates 174 cytokines before and after treatment. Variations in cytokine signal intensity were compared between both groups and the most relevant cytokines were assessed by ELISA in all the patients. RESULTS: Twenty-seven of the 174 cytokines varied significantly between both groups. Five of them (TNF-alpha, MMP-9, ICAM-1, BDNF and SDF-1) were assessed by ELISA in 21 evaluable patients. TNF-alpha and MMP-9 baseline levels were significantly increased in non-responders and significantly associated with reduced overall survival and time-to-progression, respectively. The area under the ROC curves for TNF-alpha and MMP-9 as predictive markers of sunitinib activity were 0.83 and 0.77. CONCLUSION: Baseline levels of TNF-alpha and MMP-9 warrant further study as predictive markers of sunitinib activity in MRCC. Selection of patients with extreme phenotypes seems a valid method to identify potential predictive factors of response

    Lack of relationship between TIMP-1 tumour cell immunoreactivity, treatment efficacy and prognosis in patients with advanced epithelial ovarian cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tissue inhibitor of metalloproteinase 1 (TIMP-1) is a natural inhibitor of the matrix metalloproteinases (MMPs) which are proteolytic enzymes involved in degradation of extracellular matrix thereby favoring tumour cell invasion and metastasis. TIMP-1 activity in tumour tissue may therefore play an essential role in the progression of a malignant tumour.</p> <p>The primary aim of the present study was to evaluate TIMP-1 protein immunoreactivity in tissue from primary ovarian cancer patients and associate these findings with the course of the disease including response to treatment in the individual patient.</p> <p>Methods</p> <p>TIMP-1 was assessed by immunohistochemistry (in tissue micro arrays) in a total of 163 ovarian cancer specimens obtained from primary debulking surgery during 1991-1994 as part of a randomized clinical protocol.</p> <p>Results</p> <p>Positive TIMP-1 immunoreactivity was found in 12.3% of the tumours. The median survival time for the 143 patients with TIMP-1 negative tumours was 23.7 months [19.0-29.4] 95% CI, while the median survival time for the 20 patients with TIMP-1 positive tumours was 15.9 months [12.3-27.4] 95% CI. Although a difference of 7.8 months in median overall survival in favor of the TIMP-1 tumour negative patients was found, this difference did not reach statistical significance (<it>p </it>= 0.28, Kaplan-Meier, log-rank test). Moreover, TIMP-1 immunoreactivity was not associated with CA125 response (p = 0.53) or response at second look surgery (p = 0.72).</p> <p>Conclusion</p> <p>TIMP-1 immunoreactivity in tumour tissue from patients with primary epithelial ovarian cancer did not correlate with patient survival or response to combination platinum/cyclophosphamide therapy.</p

    Conditional reprogramming and long-term expansion of normal and tumor cells from human biospecimens

    Get PDF
    Historically, it has been difficult to propagate cells in vitro that are derived directly from human tumors or healthy tissue. However, in vitro preclinical models are essential tools for both the study of basic cancer biology and the promotion of translational research, including drug discovery and drug target identification. This protocol describes conditional reprogramming (CR), which involves coculture of irradiated mouse fibroblast feeder cells with normal and tumor human epithelial cells in the presence of a Rho kinase inhibitor (Y-27632). CR cells can be used for various applications, including regenerative medicine, drug sensitivity testing, gene expression profiling and xenograft studies. The method requires a pathologist to differentiate healthy tissue from tumor tissue, and basic tissue culture skills. The protocol can be used with cells derived from both fresh and cryopreserved tissue samples. As approximately 1 million cells can be generated in 7 d, the technique is directly applicable to diagnostic and predictive medicine. Moreover, the epithelial cells can be propagated indefinitely in vitro, yet retain the capacity to become fully differentiated when placed into conditions that mimic their natural environment

    The cadherin–catenin complex in laryngeal squamous cell carcinoma

    Get PDF
    Abnormal Wnt signaling and impaired cell–cell adhesion due to abnormal E-cadherin and Ξ²-catenin function have been implicated in many cancers, but have not been fully explored in laryngeal squamous cell carcinoma. In this study, Ξ²-catenin cellular location and E-cadherin expression levels were analyzed in 16 laryngeal squamous cell carcinomas (LSCCs) (9 glottic and 7 supraglottic) and 11 samples of non-tumoral inflammatory larynx tissue, using immunohistochemical methods. All non-tumoral tissues showed equally strong membranous expression of Ξ²-catenin, while cytoplasmic expression was found in only 3 of the 11 samples. By contrast, whereas 8/9 glottic LSCCs exhibited only membranous expression of Ξ²-catenin, 6/7 supraglottic LSCCs displayed both membranous and cytoplasmic expression (pΒ =Β 0.003). Strong E-cadherin staining was observed in 9/11 non-tumoral tissues and 7/9 glottic LSCCs, whereas 4/7 supraglottic LSCCs exhibited weak expression. Reduced membrane expression of E-cadherin and cytoplasmic retention of Ξ²-catenin in supraglottic LSCC seems to be related with more aggressive biological behavior which has been described in clinical studies. Further research is required to clarify the involvement of Ξ²-catenin in the mechanism associated with malignant transformation in laryngeal tissues

    MicroRNA-9 as Potential Biomarker for Breast Cancer Local Recurrence and Tumor Estrogen Receptor Status

    Get PDF
    MicroRNAs (miRs) are small, non-protein coding transcripts involved in many cellular functions. Many miRs have emerged as important cancer biomarkers. In the present study, we investigated whether miR levels in breast tumors are predictive of breast cancer local recurrence (LR). Sixty-eight women who were diagnosed with breast cancer at the Lombardi Comprehensive Cancer Center were included in this study. Breast cancer patients with LR and those without LR were matched on year of surgery, age at diagnosis, and type of surgery. Candidate miRs were identified by screening the expression levels of 754 human miRs using miR arrays in 16 breast tumor samples from 8 cases with LR and 8 cases without LR. Eight candidate miRs that showed significant differences between tumors with and without LR were further verified in 52 tumor samples using real-time PCR. Higher expression of miR-9 was significantly associated with breast cancer LR in all cases as well as the subset of estrogen receptor (ER) positive cases (pβ€Š=β€Š0.02). The AUCs (Area Under Curve) of receiver operating characteristic (ROC) curves of miR-9 for all tumors and ER positive tumors are 0.68 (pβ€Š=β€Š0.02) and 0.69 (pβ€Š=β€Š0.02), respectively. In ER positive cases, Kaplan-Meier analysis showed that patients with lower miR-9 levels had significantly better 10-year LR-free survival (67.9% vs 30.8%, pβ€Š=β€Š0.02). Expression levels of miR-9 and another miR candidate, miR-375, were also strongly associated with ER status (p<0.001 for both). The potential of miR-9 as a biomarker for LR warrants further investigation with larger sample size

    The mechanisms by which polyamines accelerate tumor spread

    Get PDF
    Increased polyamine concentrations in the blood and urine of cancer patients reflect the enhanced levels of polyamine synthesis in cancer tissues arising from increased activity of enzymes responsible for polyamine synthesis. In addition to their de novo polyamine synthesis, cells can take up polyamines from extracellular sources, such as cancer tissues, food, and intestinal microbiota. Because polyamines are indispensable for cell growth, increased polyamine availability enhances cell growth. However, the malignant potential of cancer is determined by its capability to invade to surrounding tissues and metastasize to distant organs. The mechanisms by which increased polyamine levels enhance the malignant potential of cancer cells and decrease anti-tumor immunity are reviewed. Cancer cells with a greater capability to synthesize polyamines are associated with increased production of proteinases, such as serine proteinase, matrix metalloproteinases, cathepsins, and plasminogen activator, which can degrade surrounding tissues. Although cancer tissues produce vascular growth factors, their deregulated growth induces hypoxia, which in turn enhances polyamine uptake by cancer cells to further augment cell migration and suppress CD44 expression. Increased polyamine uptake by immune cells also results in reduced cytokine production needed for anti-tumor activities and decreases expression of adhesion molecules involved in anti-tumor immunity, such as CD11a and CD56. Immune cells in an environment with increased polyamine levels lose anti-tumor immune functions, such as lymphokine activated killer activities. Recent investigations revealed that increased polyamine availability enhances the capability of cancer cells to invade and metastasize to new tissues while diminishing immune cells' anti-tumor immune functions

    Epigenetic regulation of prostate cancer

    Get PDF
    Prostate cancer is a commonly diagnosed cancer in men and a leading cause of cancer deaths. Whilst the underlying mechanisms leading to prostate cancer are still to be determined, it is evident that both genetic and epigenetic changes contribute to the development and progression of this disease. Epigenetic changes involving DNA hypo- and hypermethylation, altered histone modifications and more recently changes in microRNA expression have been detected at a range of genes associated with prostate cancer. Furthermore, there is evidence that particular epigenetic changes are associated with different stages of the disease. Whilst early detection can lead to effective treatment, and androgen deprivation therapy has a high response rate, many tumours develop towards hormone-refractory prostate cancer, for which there is no successful treatment. Reliable markers for early detection and more effective treatment strategies are, therefore, needed. Consequently, there is a considerable interest in the potential of epigenetic changes as markers or targets for therapy in prostate cancer. Epigenetic modifiers that demethylate DNA and inhibit histone deacetylases have recently been explored to reactivate silenced gene expression in cancer. However, further understanding of the mechanisms and the effects of chromatin modulation in prostate cancer are required. In this review, we examine the current literature on epigenetic changes associated with prostate cancer and discuss the potential use of epigenetic modifiers for treatment of this disease
    corecore