1,900 research outputs found

    Non-commutative low dimension spaces and superspaces associated with contracted quantum groups and supergroups

    Full text link
    Quantum planes which correspond to all one parameter solutions of QYBE for the two-dimensional case of GL-groups are summarized and their geometrical interpretations are given. It is shown that the quantum dual plane is associated with an exotic solution of QYBE and the well-known quantum hh-plane may be regarded as the quantum analog of the flag (or fiber) plane. Contractions of the quantum supergroup GLq(1∣2) GL_q(1|2) and corresponding quantum superspace Cq(1∣2) C_q(1|2) are considered in Cartesian basis. The contracted quantum superspace Ch(1∣2;ι) C_h(1|2;\iota) is interpreted as the non-commutative analog of the superspace with the fiber odd part.Comment: Talk given at the XIII Int. Coll. on Integrable Systems and Quantum Groups, June 17-19, 2004, Prague, Czech Republic. Submitted in Czech. J. of Physic

    On contractions of classical basic superalgebras

    Full text link
    We define a class of orthosymplectic osp(m;j∣2n;ω)osp(m;j|2n;\omega) and unitary sl(m;j∣n;ϵ)sl(m;j|n;\epsilon) superalgebras which may be obtained from osp(m∣2n)osp(m|2n) and sl(m∣n)sl(m|n) by contractions and analytic continuations in a similar way as the special linear, orthogonal and the symplectic Cayley-Klein algebras are obtained from the corresponding classical ones. Casimir operators of Cayley-Klein superalgebras are obtained from the corresponding operators of the basic superalgebras. Contractions of sl(2∣1)sl(2|1) and osp(3∣2)osp(3|2) are regarded as an examples.Comment: 15 pages, Late

    Analytic Solution of Bremsstrahlung TBA

    Full text link
    We consider the quark--anti-quark potential on the three sphere or the generalized cusp anomalous dimension in planar N=4 SYM. We concentrate on the vacuum potential in the near BPS limit with LL units of R-charge. Equivalently, we study the anomalous dimension of a super-Wilson loop with L local fields inserted at a cusp. The system is described by a recently proposed infinite set of non-linear integral equations of the Thermodynamic Bethe Ansatz (TBA) type. That system of TBA equations is very similar to the one of the spectral problem but simplifies a bit in the near BPS limit. Using techniques based on the Y-system of functional equations we first reduced the infinite system of TBA equations to a Finite set of Nonlinear Integral Equations (FiNLIE). Then we solve the FiNLIE system analytically, obtaining a simple analytic result for the potential! Surprisingly, we find that the system has equivalent descriptions in terms of an effective Baxter equation and in terms of a matrix model. At L=0, our result matches the one obtained before using localization techniques. At all other L's, the result is new. Having a new parameter, L, allows us to take the large L classical limit. We use the matrix model description to solve the classical limit and match the result with a string theory computation. Moreover, we find that the classical string algebraic curve matches the algebraic curve arising from the matrix model.Comment: 50 pages, 5 figures. v2: references added, JHEP versio

    Six and seven loop Konishi from Luscher corrections

    Get PDF
    In the present paper we derive six and seven loop formulas for the anomalous dimension of the Konishi operator in N=4 SYM from string theory using the technique of Luscher corrections. We derive analytically the integrand using the worldsheet S-matrix and evaluate the resulting integral and infinite sum using a combination of high precision numerical integration and asymptotic expansion. We use this high precision numerical result to fit the integer coefficients of zeta values in the final analytical answer. The presented six and seven loop results can be used as a cross-check with FiNLIE on the string theory side, or with direct gauge theory computations. The seven loop level is the theoretical limit of this Luscher approach as at eight loops double-wrapping corrections will appear.Comment: 18 pages, typos correcte

    The quark anti-quark potential and the cusp anomalous dimension from a TBA equation

    Get PDF
    We derive a set of integral equations of the TBA type for the generalized cusp anomalous dimension, or the quark antiquark potential on the three sphere, as a function of the angles. We do this by considering a family of local operators on a Wilson loop with charge L. In the large L limit the problem can be solved in terms of a certain boundary reflection matrix. We determine this reflection matrix by using the symmetries and the boundary crossing equation. The cusp is introduced through a relative rotation between the two boundaries. Then the TBA trick of exchanging space and time leads to an exact equation for all values of L. The L=0 case corresponds to the cusped Wilson loop with no operators inserted. We then derive a slightly simplified integral equation which describes the small angle limit. We solve this equation up to three loops in perturbation theory and match the results that were obtained with more direct approaches.Comment: 63 pages, 12 figures. v2: references added, typos correcte

    Quantum folded string and integrability: from finite size effects to Konishi dimension

    Get PDF
    Using the algebraic curve approach we one-loop quantize the folded string solution for the type IIB superstring in AdS(5)xS(5). We obtain an explicit result valid for arbitrary values of its Lorentz spin S and R-charge J in terms of integrals of elliptic functions. Then we consider the limit S ~ J ~ 1 and derive the leading three coefficients of strong coupling expansion of short operators. Notably, our result evaluated for the anomalous dimension of the Konishi state gives 2\lambda^{1/4}-4+2/\lambda^{1/4}. This reproduces correctly the values predicted numerically in arXiv:0906.4240. Furthermore we compare our result using some new numerical data from the Y-system for another similar state. We also revisited some of the large S computations using our methods. In particular, we derive finite--size corrections to the anomalous dimension of operators with small J in this limit.Comment: 20 pages, 1 figure; v2: references added, typos corrected; v3: major improvement of the references; v4: Discussion of short operators is restricted to the case n=1. This restriction does not affect the main results of the pape

    First-principles derivation of the AdS/CFT Y-systems

    Full text link
    We provide a first-principles, perturbative derivation of the AdS5/CFT4 Y-system that has been proposed to solve the spectrum problem of N=4 SYM. The proof relies on the computation of quantum effects in the fusion of some loop operators, namely the transfer matrices. More precisely we show that the leading quantum corrections in the fusion of transfer matrices induce the correct shifts of the spectral parameter in the T-system. As intermediate steps we study UV divergences in line operators up to first order and compute the fusion of line operators up to second order for the pure spinor string in AdS5xS5. We also argue that the derivation can be easily extended to other integrable models, some of which describe string theory on AdS4, AdS3 and AdS2 spacetimes.Comment: 45 pages, 5 figures; v2: minor additions, JHEP versio

    Exact computation of one-loop correction to energy of pulsating strings in AdS_5 x S^5

    Full text link
    In the present paper, which is a sequel to arXiv:1001:4018, we compute the one-loop correction to the energy of pulsating string solutions in AdS_5 x S^5. We show that, as for rigid spinning string elliptic solutions, the fluctuation operators for pulsating solutions can be also put into the single-gap Lame' form. A novel aspect of pulsating solutions is that the one-loop correction to their energy is expressed in terms of the stability angles of the quadratic fluctuation operators. We explicitly study the "short string" limit of the corresponding one-loop energies, demonstrating a certain universality of the form of the energy of "small" semiclassical strings. Our results may help to shed light on the structure of strong-coupling expansion of anomalous dimensions of dual gauge theory operators.Comment: 49 pages; v2: appendix F and note about antiperiodic fermions added, typos corrected, references adde
    • …
    corecore