129 research outputs found

    HP1 Recruitment in the Absence of Argonaute Proteins in Drosophila

    Get PDF
    Highly repetitive and transposable element rich regions of the genome must be stabilized by the presence of heterochromatin. A direct role for RNA interference in the establishment of heterochromatin has been demonstrated in fission yeast. In metazoans, which possess multiple RNA–silencing pathways that are both functionally distinct and spatially restricted, whether RNA silencing contributes directly to heterochromatin formation is not clear. Previous studies in Drosophila melanogaster have suggested the involvement of both the AGO2-dependent endogenous small interfering RNA (endo-siRNA) as well as Piwi-interacting RNA (piRNA) silencing pathways. In order to determine if these Argonaute genes are required for heterochromatin formation, we utilized transcriptional reporters and chromatin immunoprecipitation of the critical factor Heterochromatin Protein 1 (HP1) to monitor the heterochromatic state of piRNA clusters, which generate both endo-siRNAs and the bulk of piRNAs. Surprisingly, we find that mutation of AGO2 or piwi increases silencing at piRNA clusters corresponding to an increase of HP1 association. Furthermore, loss of piRNA production from a single piRNA cluster results in genome-wide redistribution of HP1 and reduction of silencing at a distant heterochromatic site, suggesting indirect effects on HP1 recruitment. Taken together, these results indicate that heterochromatin forms independently of endo-siRNA and piRNA pathways

    dSETDB1 and SU(VAR)3–9 Sequentially Function during Germline-Stem Cell Differentiation in Drosophila melanogaster

    Get PDF
    Germline-stem cells (GSCs) produce gametes and are thus true “immortal stem cells”. In Drosophila ovaries, GSCs divide asymmetrically to produce daughter GSCs and cystoblasts, and the latter differentiate into germline cysts. Here we show that the histone-lysine methyltransferase dSETDB1, located in pericentric heterochromatin, catalyzes H3-K9 trimethylation in GSCs and their immediate descendants. As germline cysts differentiate into egg chambers, the dSETDB1 function is gradually taken over by another H3-K9-specific methyltransferase, SU(VAR)3–9. Loss-of-function mutations in dsetdb1 or Su(var)3–9 abolish both H3K9me3 and heterochromatin protein-1 (HP1) signals from the anterior germarium and the developing egg chambers, respectively, and cause localization of H3K9me3 away from DNA-dense regions in most posterior germarium cells. These results indicate that dSETDB1 and SU(VAR)3–9 act together with distinct roles during oogenesis, with dsetdb1 being of particular importance due to its GSC-specific function and more severe mutant phenotype

    Windei, the Drosophila Homolog of mAM/MCAF1, Is an Essential Cofactor of the H3K9 Methyl Transferase dSETDB1/Eggless in Germ Line Development

    Get PDF
    The epigenetic regulation of gene expression by the covalent modification of histones is a fundamental mechanism required for the proper differentiation of germ line cells during development. Trimethylation of histone 3 lysine 9 (H3K9me3) leads to chromatin silencing and the formation of heterochromatin by recruitment of heterochromatin protein 1 (HP1). dSETDB1/Eggless (Egg), the ortholog of the human methyltransferase SETDB1, is the only essential H3K9 methyltransferase in Drosophila and is required for H3K9 trimethylation in the female germ line. Here we show that Windei (Wde), the Drosophila homolog of mouse mAM and human MCAF1, is an essential cofactor of Egg required for its nuclear localization and function in female germ line cells. By deletion analysis combined with coimmunoprecipitation, we have identified the protein regions in Wde and Egg that are necessary and sufficient for the interaction between the two proteins. We furthermore identified a region of Egg that gets covalently modified by SUMOylation, which may facilitate the formation of higher order chromatin-modifying complexes. Together with Egg, Wde localizes to euchromatin, is enriched on chromosome 4, and binds to the Painting of fourth (POF) protein. Our data provide the first genetic and phenotypic analysis of a mAM/MCAF1 homolog in a model organism and demonstrate its essential function in the survival of germ line cells

    Phylogenetics and evolution of Su(var)3-9 SET genes in land plants: rapid diversification in structure and function

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Plants contain numerous <it>Su(var)3-9 </it>homologues (<it>SUVH</it>) and related (<it>SUVR</it>) genes, some of which await functional characterization. Although there have been studies on the evolution of plant <it>Su(var)3-9 SET </it>genes, a systematic evolutionary study including major land plant groups has not been reported. Large-scale phylogenetic and evolutionary analyses can help to elucidate the underlying molecular mechanisms and contribute to improve genome annotation.</p> <p>Results</p> <p>Putative orthologs of plant Su(var)3-9 SET protein sequences were retrieved from major representatives of land plants. A novel clustering that included most members analyzed, henceforth referred to as core <it>Su(var)3-9 </it>homologues and related (<it>cSUVHR</it>) gene clade, was identified as well as all orthologous groups previously identified. Our analysis showed that plant Su(var)3-9 SET proteins possessed a variety of domain organizations, and can be classified into five types and ten subtypes. Plant <it>Su(var)3-9 SET </it>genes also exhibit a wide range of gene structures among different paralogs within a family, even in the regions encoding conserved PreSET and SET domains. We also found that the majority of SUVH members were intronless and formed three subclades within the SUVH clade.</p> <p>Conclusions</p> <p>A detailed phylogenetic analysis of the plant <it>Su(var)3-9 SET g</it>enes was performed. A novel deep phylogenetic relationship including most plant <it>Su(var)3-9 SET </it>genes was identified. Additional domains such as SAR, ZnF_C2H2 and WIYLD were early integrated into primordial PreSET/SET/PostSET domain organization. At least three classes of gene structures had been formed before the divergence of <it>Physcomitrella patens </it>(moss) from other land plants. One or multiple retroposition events might have occurred among <it>SUVH </it>genes with the donor genes leading to the V-2 orthologous group. The structural differences among evolutionary groups of plant <it>Su(var)3-9 SET </it>genes with different functions were described, contributing to the design of further experimental studies.</p

    Perturbation Analysis of Heterochromatin-Mediated Gene Silencing and Somatic Inheritance

    Get PDF
    Repetitive sequences in eukaryotic genomes induce chromatin-mediated gene-silencing of juxtaposed genes. Many components that promote or antagonize silencing have been identified, but how heterochromatin causes variegated and heritable changes in gene expression remains mysterious. We have used inducible mis-expression in the Drosophila eye to recover new factors that alter silencing caused by the bwD allele, an insertion of repetitive satellite DNA that silences a bw+ allele on the homologous chromosome. Inducible modifiers allow perturbation of silencing at different times in development, and distinguish factors that affect establishment or maintenance of silencing. We find that diverse chromatin and RNA processing factors can de-repress silencing. Most factors are effective even in differentiated cells, implying that silent chromatin remains plastic. However, over-expression of the bantam microRNA or the crooked-legs (crol) zinc-finger protein only de-repress silencing when expressed in cycling cells. Over-expression of crol accelerates the cell cycle, and this is required for de-repression of silencing. Strikingly, continual over-expression of crol converts the speckled variegation pattern of bwD into sectored variegation, where de-repression is stably inherited through mitotic divisions. Over-expression of crol establishes an open chromatin state, but the factor is not needed to maintain this state. Our analysis reveals that active chromatin states can be efficiently inherited through cell divisions, with implications for the stable maintenance of gene expression patterns through development

    SU(VAR)3-7 Links Heterochromatin and Dosage Compensation in Drosophila

    Get PDF
    In Drosophila, dosage compensation augments X chromosome-linked transcription in males relative to females. This process is achieved by the Dosage Compensation Complex (DCC), which associates specifically with the male X chromosome. We previously found that the morphology of this chromosome is sensitive to the amounts of the heterochromatin-associated protein SU(VAR)3-7. In this study, we examine the impact of change in levels of SU(VAR)3-7 on dosage compensation. We first demonstrate that the DCC makes the X chromosome a preferential target for heterochromatic markers. In addition, reduced or increased amounts of SU(VAR)3-7 result in redistribution of the DCC proteins MSL1 and MSL2, and of Histone 4 acetylation of lysine 16, indicating that a wild-type dose of SU(VAR)3-7 is required for X-restricted DCC targeting. SU(VAR)3-7 is also involved in the dosage compensated expression of the X-linked white gene. Finally, we show that absence of maternally provided SU(VAR)3-7 renders dosage compensation toxic in males, and that global amounts of heterochromatin affect viability of ectopic MSL2-expressing females. Taken together, these results bring to light a link between heterochromatin and dosage compensation

    Genome-Wide Survey and Developmental Expression Mapping of Zebrafish SET Domain-Containing Genes

    Get PDF
    SET domain-containing proteins represent an evolutionarily conserved family of epigenetic regulators, which are responsible for most histone lysine methylation. Since some of these genes have been revealed to be essential for embryonic development, we propose that the zebrafish, a vertebrate model organism possessing many advantages for developmental studies, can be utilized to study the biological functions of these genes and the related epigenetic mechanisms during early development. To this end, we have performed a genome-wide survey of zebrafish SET domain genes. 58 genes total have been identified. Although gene duplication events give rise to several lineage-specific paralogs, clear reciprocal orthologous relationship reveals high conservation between zebrafish and human SET domain genes. These data were further subject to an evolutionary analysis ranging from yeast to human, leading to the identification of putative clusters of orthologous groups (COGs) of this gene family. By means of whole-mount mRNA in situ hybridization strategy, we have also carried out a developmental expression mapping of these genes. A group of maternal SET domain genes, which are implicated in the programming of histone modification states in early development, have been identified and predicted to be responsible for all known sites of SET domain-mediated histone methylation. Furthermore, some genes show specific expression patterns in certain tissues at certain stages, suggesting the involvement of epigenetic mechanisms in the development of these systems. These results provide a global view of zebrafish SET domain histone methyltransferases in evolutionary and developmental dimensions and pave the way for using zebrafish to systematically study the roles of these genes during development

    Ten principles of heterochromatin formation and function

    Get PDF
    corecore