7,944 research outputs found

    Probing nuclear symmetry energy with the sub-threshold pion production

    Full text link
    Within the framework of semiclassical Boltzmann-Uehling-Uhlenbeck (BUU) transport model, we investigated the effects of symmetry energy on the sub-threshold pion using the isospin MDI interaction with the stiff and soft symmetry energies in the central collision of 48^{48}Ca + 48^{48}Ca at the incident beam energies of 100, 150, 200, 250 and 300 MeV/nucleon, respectively. We find that the ratio of π/π+\pi^{-}/\pi^{+} of sub-threshold charged pion production is greatly sensitive to the symmetry energy, particularly around 100 MeV/nucleon energies. Large sensitivity of sub-threshold charged pion production to nuclear symmetry energy may reduce uncertainties of probing nuclear symmetry energy via heavy-ion collision.Comment: 5 pages, 5 figures, typo corrections, submitted to Chinese Physics Letter

    Comparison of Canonical and Grand Canonical Models for selected multifragmentation data

    Get PDF
    Calculations for a set of nuclear multifragmentation data are made using a Canonical and a Grand Canonical Model. The physics assumptions are identical but the Canonical Model has an exact number of particles, whereas, the Grand Canonical Model has a varying number of particles, hence, is less exact. Interesting differences are found.Comment: 12 pages, Revtex, and 3 postscript figure

    Effects of geometric constraints on the nuclear multifragmentation process

    Get PDF
    We include in statistical model calculations the facts that in the nuclear multifragmentation process the fragments are produced within a given volume and have a finite size. The corrections associated with these constraints affect the partition modes and, as a consequence, other observables in the process. In particular, we find that the favored fragmenting modes strongly suppress the collective flow energy, leading to much lower values compared to what is obtained from unconstrained calculations. This leads, for a given total excitation energy, to a nontrivial correlation between the breakup temperature and the collective expansion velocity. In particular we find that, under some conditions, the temperature of the fragmenting system may increase as a function of this expansion velocity, contrary to what it might be expected.Comment: 16 pages, 5 figure
    corecore