81 research outputs found

    Cherenkov radiation by particles traversing the background radiatio n

    Get PDF
    High energy particles traversing the Universe through the cosmic microwave backgroung radiation can, in principle, emit Cherenkov radiation. It is shown that the energy threshold for this radiation is extremely high and its intensity would be too low due to the low density of the "relic photons gas" and very weak interaction of two photons.Comment: 6 pages, LATEX, no Figs.; to be published in JETP Lett. 75 (N4) (2002

    Probing vacuum birefringence by phase-contrast Fourier imaging under fields of high-intensity lasers

    Full text link
    In vacuum high-intensity lasers can cause photon-photon interaction via the process of virtual vacuum polarization which may be measured by the phase velocity shift of photons across intense fields. In the optical frequency domain, the photon-photon interaction is polarization-mediated described by the Euler-Heisenberg effective action. This theory predicts the vacuum birefringence or polarization dependence of the phase velocity shift arising from nonlinear properties in quantum electrodynamics (QED). We suggest a method to measure the vacuum birefringence under intense optical laser fields based on the absolute phase velocity shift by phase-contrast Fourier imaging. The method may serve for observing effects even beyond the QED vacuum polarization.Comment: 14 pages, 9 figures. Accepted by Applied Physics

    Generation of Cosmological Seed Magnetic Fields from Inflation with Cutoff

    Full text link
    Inflation has the potential to seed the galactic magnetic fields observed today. However, there is an obstacle to the amplification of the quantum fluctuations of the electromagnetic field during inflation: namely the conformal invariance of electromagnetic theory on a conformally flat underlying geometry. As the existence of a preferred minimal length breaks the conformal invariance of the background geometry, it is plausible that this effect could generate some electromagnetic field amplification. We show that this scenario is equivalent to endowing the photon with a large negative mass during inflation. This effective mass is negligibly small in a radiation and matter dominated universe. Depending on the value of the free parameter of the theory, we show that the seed required by the dynamo mechanism can be generated. We also show that this mechanism can produce the requisite galactic magnetic field without resorting to a dynamo mechanism.Comment: Latex, 16 pages, 2 figures, 4 references added, minor corrections; v4: more references added, boundary term written in a covariant form, discussion regarding other gauge fields added, submitted to PRD; v5: matched with the published versio

    Ultraviolet and soft X--ray photon--photon elastic scattering in an electron gas

    Full text link
    We have considered the processes which lead to elastic scattering between two far ultraviolet or X--ray photons while they propagate inside a solid, modeled as a simple electron gas. The new ingredient, with respect to the standard theory of photon--photon scattering in vacuum, is the presence of low--energy, nonrelativistic electron--hole excitations. Owing to the existence of two--photon vertices, the scattering processes in the metal are predominantly of second order, as opposed to fourth order for the vacuum case. The main processes in second order are dominated by exchange of virtual plasmons between the two photons. For two photons of similar energy ℏΩ\hbar \Omega, this gives rise to a cross section rising like Ω2\Omega^2 up to maximum of around 10−3210^{-32}~cm2^2, and then decreasing like Ω−6\Omega^{-6}. The maximal cross section is found for the photon wavevector k∌kFk \sim k_{F}, the Fermi surface size, which typically means a photon energy ℏΩ\hbar \Omega in the keV range. Possible experiments aimed at checking the existence of these rare but seemingly measurable elastic photon--photon scattering processes are discussed, using in particular intense synchrotron sources.Comment: 33 pages, TeX, Version 3.1, S.I.S.S.A. preprint 35/93/C

    Two-photon final states in peripheral heavy ion collisions

    Get PDF
    We discuss processes leading to two photon final states in peripheral heavy ion collisions at RHIC. Due to the large photon luminosity we show that the continuum subprocess γγ→γγ\gamma \gamma \to \gamma \gamma can be observed with a large number of events. We study this reaction when it is intermediated by a resonance made of quarks or gluons and discuss its interplay with the continuum process, verifying that in several cases the resonant process ovewhelms the continuum one. It is also investigated the possibility of observing a scalar resonance (the σ\sigma meson) in this process. Assuming for the σ\sigma the mass and total decay width values recently reported by the E791 Collaboration we show that RHIC may detect this particle in its two photon decay mode if its partial photonic decay width is of the order of the ones discussed in the literature.Comment: 10 pages, 8 figure

    Elastic and Raman scattering of 9.0 and 11.4 MeV photons from Au, Dy and In

    Full text link
    Monoenergetic photons between 8.8 and 11.4 MeV were scattered elastically and in elastically (Raman) from natural targets of Au, Dy and In.15 new cross sections were measured. Evidence is presented for a slight deformation in the 197Au nucleus, generally believed to be spherical. It is predicted, on the basis of these measurements, that the Giant Dipole Resonance of Dy is very similar to that of 160Gd. A narrow isolated resonance at 9.0 MeV is observed in In.Comment: 31 pages, 11 figure

    Probing For New Physics and Detecting non linear vacuum QED effects using gravitational wave interferometer antennas

    Get PDF
    Low energy non linear QED effects in vacuum have been predicted since 1936 and have been subject of research for many decades. Two main schemes have been proposed for such a 'first' detection: measurements of ellipticity acquired by a linearly polarized beam of light passing through a magnetic field and direct light-light scattering. The study of the propagation of light through an external field can also be used to probe for new physics such as the existence of axion-like particles and millicharged particles. Their existence in nature would cause the index of refraction of vacuum to be different from unity in the presence of an external field and dependent of the polarization direction of the light propagating. The major achievement of reaching the project sensitivities in gravitational wave interferometers such as LIGO an VIRGO has opened the possibility of using such instruments for the detection of QED corrections in electrodynamics and for probing new physics at very low energies. In this paper we discuss the difference between direct birefringence measurements and index of refraction measurements. We propose an almost parasitic implementation of an external magnetic field along the arms of the VIRGO interferometer and discuss the advantage of this choice in comparison to a previously proposed configuration based on shorter prototype interferometers which we believe is inadequate. Considering the design sensitivity in the strain, for the near future VIRGO+ interferometer, of h<2⋅10−231Hzh<2\cdot10^{-23} \frac{1}{\sqrt{\rm Hz}} in the range 40 Hz −400- 400 Hz leads to a variable dipole magnet configuration at a frequency above 20 Hz such that B2D≄13000B^{2}D \ge 13000 T2^{2}m/Hz\sqrt{\rm Hz} for a `first' vacuum non linear QED detection

    On the pion electroproduction amplitude

    Full text link
    We analyze amplitudes for the pion electroproduction on proton derived from Lagrangians based on the local chiral SU(2) x SU(2) symmetries. We show that such amplitudes do contain information on the nucleon axial form factor F_A in both soft and hard pion regimes. This result invalidates recent Haberzettl's claim that the pion electroproduction at threshold cannot be used to extract any information regarding F_A.Comment: 14 pages, 6 figures, revised version, accepted for publication in Phys. Rev.

    Chromosome-scale genome assembly of the brown anole (Anolis sagrei), an emerging model species

    Get PDF
    Rapid technological improvements are democratizing access to high quality, chromosome-scale genome assemblies. No longer the domain of only the most highly studied model organisms, now non-traditional and emerging model species can be genome-enabled using a combination of sequencing technologies and assembly software. Consequently, old ideas built on sparse sampling across the tree of life have recently been amended in the face of genomic data drawn from a growing number of high-quality reference genomes. Arguably the most valuable are those long-studied species for which much is already known about their biology; what many term emerging model species. Here, we report a highly complete chromosome-scale genome assembly for the brown anole, Anolis sagrei – a lizard species widely studied across a variety of disciplines and for which a high-quality reference genome was long overdue. This assembly exceeds the vast majority of existing reptile and snake genomes in contiguity (N50 = 253.6 Mb) and annotation completeness. Through the analysis of this genome and population resequence data, we examine the history of repetitive element accumulation, identify the X chromosome, and propose a hypothesis for the evolutionary history of fusions between autosomes and the X that led to the sex chromosomes of A. sagrei

    Low incidence of SARS-CoV-2, risk factors of mortality and the course of illness in the French national cohort of dialysis patients

    Get PDF
    • 

    corecore