Inflation has the potential to seed the galactic magnetic fields observed
today. However, there is an obstacle to the amplification of the quantum
fluctuations of the electromagnetic field during inflation: namely the
conformal invariance of electromagnetic theory on a conformally flat underlying
geometry. As the existence of a preferred minimal length breaks the conformal
invariance of the background geometry, it is plausible that this effect could
generate some electromagnetic field amplification. We show that this scenario
is equivalent to endowing the photon with a large negative mass during
inflation. This effective mass is negligibly small in a radiation and matter
dominated universe. Depending on the value of the free parameter of the theory,
we show that the seed required by the dynamo mechanism can be generated. We
also show that this mechanism can produce the requisite galactic magnetic field
without resorting to a dynamo mechanism.Comment: Latex, 16 pages, 2 figures, 4 references added, minor corrections;
v4: more references added, boundary term written in a covariant form,
discussion regarding other gauge fields added, submitted to PRD; v5: matched
with the published versio