45,432 research outputs found

    Microwave induced elastic deformation of a metallic thin film

    Full text link
    The microwave induced elastic deformation of a metallic thin film is computed numerically and we found that the deformation can be significantly enhanced at resonance. We show that an analytical transmission line model can reproduce the numerical results almost quantitatively and at the same time reveal the underlying physics.Comment: 8 pages,3 figure

    Automatic detection and classification of nasopharyngeal carcinoma on PET/CT with support vector machine

    Get PDF
    Purpose: Positron emission tomography/computed tomography (PET/CT) has established values for imaging of head and neck cancers, including the nasopharyngeal carcinoma (NPC), utilizing both morphologic and functional information. In this paper, we introduce a computerized system for automatic detection of NPC, targeting both the primary tumor and regional nodal metastasis, on PET/CT. Methods: Candidate lesions were extracted based on the features from both PET and CT images and a priori knowledge of anatomical features and subsequently classified by a support vector machine algorithm. The system was validated with 25 PET/CT examinations from 10 patients suffering from NPC. Lesions manually contoured by experienced radiologists were used as the gold standard. Results: Results showed that the system successfully identified all 53 hypermetabolic lesions larger than 1 cm in size and excluded normal physiological uptake in brown fat, muscles, bone marrow, brain, and salivary glands. Conclusion: The system combined both imaging features and a priori clinical knowledge for classification between pathological and physiological uptake. Preliminary results showed that the system was highly accurate and promising for adoption in clinical use. © The Author(s) 2011.published_or_final_versionSpringer Open Choice, 25 May 201

    Exact Solutions of Relativistic Two-Body Motion in Lineal Gravity

    Get PDF
    We develop the canonical formalism for a system of NN bodies in lineal gravity and obtain exact solutions to the equations of motion for N=2. The determining equation of the Hamiltonian is derived in the form of a transcendental equation, which leads to the exact Hamiltonian to infinite order of the gravitational coupling constant. In the equal mass case explicit expressions of the trajectories of the particles are given as the functions of the proper time, which show characteristic features of the motion depending on the strength of gravity (mass) and the magnitude and sign of the cosmological constant. As expected, we find that a positive cosmological constant has a repulsive effect on the motion, while a negative one has an attractive effect. However, some surprising features emerge that are absent for vanishing cosmological constant. For a certain range of the negative cosmological constant the motion shows a double maximum behavior as a combined result of an induced momentum-dependent cosmological potential and the gravitational attraction between the particles. For a positive cosmological constant, not only bounded motions but also unbounded ones are realized. The change of the metric along the movement of the particles is also exactly derived.Comment: 37 pages, Latex, 24 figure

    Exact Solution for the Metric and the Motion of Two Bodies in (1+1) Dimensional Gravity

    Get PDF
    We present the exact solution of two-body motion in (1+1) dimensional dilaton gravity by solving the constraint equations in the canonical formalism. The determining equation of the Hamiltonian is derived in a transcendental form and the Hamiltonian is expressed for the system of two identical particles in terms of the Lambert WW function. The WW function has two real branches which join smoothly onto each other and the Hamiltonian on the principal branch reduces to the Newtonian limit for small coupling constant. On the other branch the Hamiltonian yields a new set of motions which can not be understood as relativistically correcting the Newtonian motion. The explicit trajectory in the phase space (r,p)(r, p) is illustrated for various values of the energy. The analysis is extended to the case of unequal masses. The full expression of metric tensor is given and the consistency between the solution of the metric and the equations of motion is rigorously proved.Comment: 34 pages, LaTeX, 16 figure

    Lateral Optical Force On Chiral Particles Near a Surface

    Full text link
    Light can exert radiation pressure on any object it encounters and that resulting optical force can be used to manipulate particles. It is commonly assumed that light should move a particle forward and indeed an incident plane wave with a photon momentum hk can only push any particle, independent of its properties, in the direction of k. Here we demonstrate using full-wave simulations that an anomalous lateral force can be induced in a direction perpendicular to that of the incident photon momentum if a chiral particle is placed above a substrate that does not break any left-right symmetry. Analytical theory shows that the lateral force emerges from the coupling between structural chirality (the handedness of the chiral particle) and the light reflected from the substrate surface. Such coupling induces a sideway force that pushes chiral particles with opposite handedness in opposite directions.Comment: 30 pages, 9 figure

    ADI splitting schemes for a fourth-order nonlinear partial differential equation from image processing

    Get PDF
    We present directional operator splitting schemes for the numerical solution of a fourth-order, nonlinear partial differential evolution equation which arises in image processing. This equation constitutes the H−1-gradient flow of the total variation and represents a prototype of higher-order equations of similar type which are popular in imaging for denoising, deblurring and inpainting problems. The efficient numerical solution of this equation is very challenging due to the stiffness of most numerical schemes. We show that the combination of directional splitting schemes with implicit time-stepping provides a stable and computationally cheap numerical realisation of the equation
    corecore