361 research outputs found

    Impeachment of a Witness\u27s Character in New Mexico

    Get PDF

    Evidence - Lie Detector Tests - Prior Stipulation of Admissibility

    Get PDF

    An IR Search for Extinguished Supernovae in Starburst Galaxies

    Full text link
    IR and Radio band observations of heavily extinguished regions in starburst galaxies suggest a very high SN rate associated with such regions. Optically measured supernova (SN) rates may therefore underestimate the total SN rate by factors of up to 10, due to the high extinction to SNe in starburst regions. The IR/radio SN rates come from a variety of indirect means, however, which suffer from model dependence and other problems. We describe a direct measurement of the SN rate from a regular patrol of starburst galaxies done with K' band imaging to minimize the effects of extinction. A collection of K' measurements of core-collapse SNe near maximum light is presented. Results of a preliminary SN search using the MIRC camera at the Wyoming IR Observatory (WIRO), and an improved search using the ORCA optics are described. A monthly patrol of starburst galaxies within 25 Mpc should yield 1.6 - 9.6 SNe/year. Our MIRC search with low-resolution (2.2" pixels) failed to find extinguished SNe, limiting the SN rate outside the nucleus (at > 15" radius) to less than 3.8 Supernova Rate Units (SRU or SNe/century/10^10 L(solar); 90% confidence). The MIRC camera had insufficient resolution to search nuclear starburst regions, where SN activity is concentrated, explaining why we found no heavily obscured SNe. We conclude that high-resolution, small field SN searches in starburst nuclei are more productive than low resolution, large-field searches, even for our large galaxies. With our ORCA high-resolution optics, we could limit the total SN rate to < 1.3 SRU at 90% confidence in 3 years of observations, lower than the most pessimistic estimate.Comment: AJ Submitted 1998 Dec. 13. View figures and download all as one file at http://panisse.lbl.gov/public/bruce/irs

    Radiometry for Nighttime Sub-Cloud Imaging of Venus' Surface in the Near-InfraRed Spectrum

    Full text link
    Does radiometry (e.g., signal-to-noise ratio) limit the performance of near-IR subcloud imaging of our sister planet's surface at night? It does not. We compute subcloud radiometry using above-cloud observations, an assumed ground temperature, sub-cloud absorption and emission modeling, and Rayleigh scattering simulations. We thus confirm both archival and recent studies that deployment of a modest subcloud camera does enable high-resolution surface imaging.Comment: 14 pages, 8 figure

    ESI, a new Keck Observatory echellette spectrograph and imager

    Full text link
    The Echellette Spectrograph and Imager (ESI) is a multipurpose instrument which has been delivered by the Instrument Development Laboratory of Lick Observatory for use at the Cassegrain focus of the Keck II telescope. ESI saw first light on August 29, 1999. ESI is a multi-mode instrument that enables the observer to seamlessly switch between three modes during an observation. The three modes of ESI are: An R=13,000-echellette mode; Low-dispersion prismatic mode; Direct imaging mode. ESI contains a unique flexure compensation system which reduces the small instrument flexure to negligible proportions. Long-exposure images on the sky show FWHM spot diameters of 34 microns (0.34") averaged over the entire field of view. These are the best non-AO images taken in the visible at Keck Observatory to date. Maximum efficiencies are measured to be 28% for the echellette mode and greater than 41% for low-dispersion prismatic mode including atmospheric, telescope and detector losses. In this paper we describe the instrument and its development. We also discuss the performance-testing and some observational results.Comment: 10 pages, 14 figures, 8tables, accepted for publication in PASP, 15 April 200

    Hole Hopping through Tryptophan in Cytochrome P450

    Get PDF
    Electron-transfer kinetics have been measured in four conjugates of cytochrome P450 with surface-bound Ru-photosensitizers. The conjugates are constructed with enzymes from Bacillus megaterium (CYP102A1) and Sulfolobus acidocaldarius (CYP119). A W96 residue lies in the path between Ru and the heme in CYP102A1, whereas H76 is present at the analogous location in CYP119. Two additional conjugates have been prepared with (CYP102A1)W96H and (CYP119)H76W mutant enzymes. Heme oxidation by photochemically generated Ru^(3+) leads to P450 compound II formation when a tryptophan residue is in the path between Ru and the heme; no heme oxidation is observed when histidine occupies this position. The data indicate that heme oxidation proceeds via two-step tunneling through a tryptophan radical intermediate. In contrast, heme reduction by photochemically generated Ru+ proceeds in a single electron tunneling step with closely similar rate constants for all four conjugates

    Erratum: Prolonged monitoring of cerebral blood flow and autoregulation with diffuse correlation spectroscopy in neurocritical care patients

    Get PDF
    Corrected disclosures for the article “Prolonged monitoring of cerebral blood flow and autoregulation with diffuse correlation spectroscopy in neurocritical care patients.” DOI: 10.1117/1.NPh.5.4.045005.Published versio

    Capillary electrophoresis of ultrasmall carboxylate functionalized silicon nanoparticles

    Full text link
    Capillary electrophoresis is used to separate ultrasmall ( approximately 1 nm) carboxylate functionalized Si nanoparticles (Si-np-COO(-)) prepared via hydrosilylation with an omega-ester 1-alkene. The electropherograms show a monodisperse Si core size with one or two carboxylate groups added to the surface. On-column detection of their laser-induced fluorescence demonstrates that the individual Si-np-COO(-) have narrow emissions (full width at half maximum = 30-40 nm) with a nearly symmetric lineshape. Preparative scale electrophoresis should be a viable route for purification of the Si-np-COO(-) for further study and future applications

    Nonlinear elastic imaging using reciprocal time reversal and third order symmetry analysis

    Get PDF
    This paper presents a nonlinear imaging method for the detection of the nonlinear signature due to impact damage in complex anisotropic solids with diffuse field conditions. The proposed technique, based on a combination of an inverse filtering approach with phase symmetry analysis and frequency modulated excitation signals, is applied to a number of waveforms containing the nonlinear impulse responses of the medium. Phase symmetry analysis was used to characterize the third order nonlinearity of the structure by exploiting its invariant properties with the phase angle of the input waveforms. Then, a “virtual” reciprocal time reversal imaging process, using only one broadcasting transducer and one receiving transducer, was used to insonify the defect taking advantage of multiple linear scattering as mode conversion and boundary reflections. The robustness of this technique was experimentally demonstrated on a damaged sandwich panel, and the nonlinear source, induced by low-velocity impact loading, was retrieved with a high level of accuracy. Its minimal processing requirements make this method a valid alternative to the traditional nonlinear elastic wave spectroscopy techniques for materials showing either classical or non-classical nonlinear behavior
    • …
    corecore