1,193 research outputs found

    Phase-sensitive detection of Bragg scattering at 1D optical lattices

    Full text link
    We report on the observation of Bragg scattering at 1D atomic lattices. Cold atoms are confined by optical dipole forces at the antinodes of a standing wave generated by the two counter-propagating modes of a laser-driven high-finesse ring cavity. By heterodyning the Bragg-scattered light with a reference beam, we obtain detailed information on phase shifts imparted by the Bragg scattering process. Being deep in the Lamb-Dicke regime, the scattered light is not broadened by the motion of individual atoms. In contrast, we have detected signatures of global translatory motion of the atomic grating.Comment: 4 pages, 4 figure

    Ultra-cold atoms in an optical cavity: two-mode laser locking to the cavity avoiding radiation pressure

    Full text link
    The combination of ultra-cold atomic clouds with the light fields of optical cavities provides a powerful model system for the development of new types of laser cooling and for studying cooperative phenomena. These experiments critically depend on the precise tuning of an incident pump laser with respect to a cavity resonance. Here, we present a simple and reliable experimental tuning scheme based on a two-mode laser spectrometer. The scheme uses a first laser for probing higher-order transversal modes of the cavity having an intensity minimum near the cavity's optical axis, where the atoms are confined by a magnetic trap. In this way the cavity resonance is observed without exposing the atoms to unwanted radiation pressure. A second laser, which is phase-locked to the first one and tuned close to a fundamental cavity mode drives the coherent atom-field dynamics.Comment: 7 pages, 7 figure

    Ensemble of Hankel Matrices for Face Emotion Recognition

    Full text link
    In this paper, a face emotion is considered as the result of the composition of multiple concurrent signals, each corresponding to the movements of a specific facial muscle. These concurrent signals are represented by means of a set of multi-scale appearance features that might be correlated with one or more concurrent signals. The extraction of these appearance features from a sequence of face images yields to a set of time series. This paper proposes to use the dynamics regulating each appearance feature time series to recognize among different face emotions. To this purpose, an ensemble of Hankel matrices corresponding to the extracted time series is used for emotion classification within a framework that combines nearest neighbor and a majority vote schema. Experimental results on a public available dataset shows that the adopted representation is promising and yields state-of-the-art accuracy in emotion classification.Comment: Paper to appear in Proc. of ICIAP 2015. arXiv admin note: text overlap with arXiv:1506.0500

    Traffic-Related Air Pollution and All-Cause Mortality during Tuberculosis Treatment in California.

    Get PDF
    BackgroundAmbient air pollution and tuberculosis (TB) have an impact on public health worldwide, yet associations between the two remain uncertain.ObjectiveWe determined the impact of residential traffic on mortality during treatment of active TB.MethodsFrom 2000-2012, we enrolled 32,875 patients in California with active TB and followed them throughout treatment. We obtained patient data from the California Tuberculosis Registry and calculated traffic volumes and traffic densities in 100- to 400-m radius buffers around residential addresses. We used Cox models to determine mortality hazard ratios, controlling for demographic, socioeconomic, and clinical potential confounders. We categorized traffic exposures as quintiles and determined trends using Wald tests.ResultsParticipants contributed 22,576 person-years at risk. There were 2,305 deaths during treatment for a crude mortality rate of 1,021 deaths per 10,000 person-years. Traffic volumes and traffic densities in all buffers around patient residences were associated with increased mortality during TB treatment, although the findings were not statistically significant in all buffers. As the buffer size decreased, fifth-quintile mortality hazards increased, and trends across quintiles of traffic exposure became more statistically significant. Increasing quintiles of nearest-road traffic volumes in the 100-m buffer were associated with 3%, 14%, 19%, and 28% increased risk of death during TB treatment [first quintile, referent; second quintile hazard ratio (HR)=1.03 [95% confidence interval (CI): 0.86, 1.25]; third quintile HR=1.14 (95% CI: 0.95, 1.37); fourth quintile HR=1.19 (95% CI: 0.99, 1.43); fifth quintile HR=1.28 (95% CI: 1.07, 1.53), respectively; p-trend=0.002].ConclusionsResidential proximity to road traffic volumes and traffic density were associated with increased all-cause mortality in patients undergoing treatment for active tuberculosis even after adjusting for multiple demographic, socioeconomic, and clinical factors, suggesting that TB patients are susceptible to the adverse health effects of traffic-related air pollution. https://doi.org/10.1289/EHP1699

    Highly versatile atomic micro traps generated by multifrequency magnetic field modulation

    Full text link
    We propose the realization of custom-designed adiabatic potentials for cold atoms based on multimode radio frequency radiation in combination with static inhomogeneous magnetic fields. For example, the use of radio frequency combs gives rise to periodic potentials acting as gratings for cold atoms. In strong magnetic field gradients the lattice constant can be well below 1 micrometer. By changing the frequencies of the comb in time the gratings can easily be propagated in space, which may prove useful for Bragg scattering atomic matter waves. Furthermore, almost arbitrarily shaped potential are possible such as disordered potentials on a scale of several 100 nm or lattices with a spatially varying lattice constant. The potentials can be made state selective and, in the case of atomic mixtures, also species selective. This opens new perspectives for generating tailored quantum systems based on ultra cold single atoms or degenerate atomic and molecular quantum gases.Comment: 12 pages, 6 figure

    Fast cavity-enhanced atom detection with low noise and high fidelity

    Get PDF
    Cavity quantum electrodynamics describes the fundamental interactions between light and matter, and how they can be controlled by shaping the local environment. For example, optical microcavities allow high-efficiency detection and manipulation of single atoms. In this regime fluctuations of atom number are on the order of the mean number, which can lead to signal fluctuations in excess of the noise on the incident probe field. Conversely, we demonstrate that nonlinearities and multi-atom statistics can together serve to suppress the effects of atomic fluctuations when making local density measurements on clouds of cold atoms. We measure atom densities below 1 per cavity mode volume near the photon shot-noise limit. This is in direct contrast to previous experiments where fluctuations in atom number contribute significantly to the noise. Atom detection is shown to be fast and efficient, reaching fidelities in excess of 97% after 10 us and 99.9% after 30 us.Comment: 7 pages, 4 figures, 1 table; extensive changes to format and discussion according to referee comments; published in Nature Communications with open acces

    Dynamical Coupling between a Bose-Einstein Condensate and a Cavity Optical Lattice

    Get PDF
    A Bose-Einstein condensate is dispersively coupled to a single mode of an ultra-high finesse optical cavity. The system is governed by strong interactions between the atomic motion and the light field even at the level of single quanta. While coherently pumping the cavity mode the condensate is subject to the cavity optical lattice potential whose depth depends nonlinearly on the atomic density distribution. We observe bistability already below the single photon level and strong back-action dynamics which tunes the system periodically out of resonance.Comment: 5 pages, 4 figure

    Cooperative coupling of ultracold atoms and surface plasmons

    Full text link
    Cooperative coupling between optical emitters and light fields is one of the outstanding goals in quantum technology. It is both fundamentally interesting for the extraordinary radiation properties of the participating emitters and has many potential applications in photonics. While this goal has been achieved using high-finesse optical cavities, cavity-free approaches that are broadband and easy to build have attracted much attention recently. Here we demonstrate cooperative coupling of ultracold atoms with surface plasmons propagating on a plane gold surface. While the atoms are moving towards the surface they are excited by an external laser pulse. Excited surface plasmons are detected via leakage radiation into the substrate of the gold layer. A maximum Purcell factor of ηP=4.9\eta_\mathrm{P}=4.9 is reached at an optimum distance of z=250 nmz=250~\mathrm{nm} from the surface. The coupling leads to the observation of a Fano-like resonance in the spectrum.Comment: 9 pages, 4 figure
    corecore