980 research outputs found

    Density dependence of SOL power width in ASDEX upgrade L-Mode

    Get PDF
    AbstractUnderstanding the heat transport in the scrape-off layer (SOL) and the divertor region is essential for the design of large fusion devices such as ITER and DEMO. Current scalings for the power fall-off length λq in H-Mode [1] are available only for the outer divertor target at low densities with low recycling divertor conditions. For the divertor power spreading S only an empirical scaling for ASDEX Upgrade L-Mode is available based on global plasma parameters [2]. Modelling using SOLPS shows a dependence of S on the divertor electron temperature [3]. A more detailed analysis of the heat transport forming λq and S is presented for ASDEX Upgrade L-Mode discharges in hydrogen (H), deuterium (D) and helium (He). For low densities the power fall-off length λq,o on the outer divertor target in H and D is described by the same parametric dependencies as the H-Mode scaling [1] but with a larger absolute size of the power fall-off length in L-Mode.The divertor power spreading S is studied using the local divertor measurements of the target electron temperature Te,tar and density ne,tar. It is found that the competition of the diffusive transport parallel and perpendicular to the magnetic field forming S∝χ⊄/χ∄ is dominated by the temperature dependence of parallel electron conduction. For high divertor temperatures the ion gyro radius has a significant contribution to S, resulting in a minimum of S at ∌30 eV.A recent study [4] with an open divertor configuration found an asymmetry of the power fall-off length between inner and outer target with a smaller power fall-off length λq,i on the inner divertor target. Measurements with a closed divertor configuration find a similar asymmetry for low recycling divertor conditions. It is found, in the experiment, that the in/out asymmetry λq,i/λq,o is strongly increasing with increasing density. Most notably the heat flux density at the inner divertor target is reducing with increasing λq,i whilst the total power onto each divertor target stays constant. It is found that λq,o exhibits no significant density dependence for hydrogen and deuterium but increases with about the square root of the electron density for helium. The difference between H,D and He could be due to the different recycling behaviour in the divertor. These findings may help current modelling attempts to parametrize the density dependence of the widening of the power channel and thus allow for detailed comparison to both divertor effects like recycling or increased upstream SOL cross field transport
    • 

    corecore