15,491 research outputs found

    A radiometric method for measuring the insertion loss of radome materials

    Get PDF
    Radiometer system measures effective noise temperature directed towards sky, with and without radome over antenna horn. Data is then translated into computer format. With additional transmission line insertion loss data from other measurements, computer calculates insertion loss of radome material

    Control system design using frequency domain models and parameter optimization, with application to supersonic inlet controls

    Get PDF
    A technique is described for designing feedback control systems using frequency domain models, a quadratic cost function, and a parameter optimization computer program. FORTRAN listings for the computer program are included. The approach is applied to the design of shock position controllers for a supersonic inlet. Deterministic or random system disturbances, and the presence of random measurement noise are considered. The cost function minimization is formulated in the time domain, but the problem solution is obtained using a frequency domain system description. A scaled and constrained conjugate gradient algorithm is used for the minimization. The approach to a supersonic inlet included the calculations of the optimal proportional-plus integral (PI) and proportional-plus-integral-plus-derivative controllers. A single-loop PI controller was the most desirable of the designs considered

    Performance improvement of DSS-13 34-meter beam-waveguide antenna using the JPL microwave holography methodology

    Get PDF
    Described here is the application of the microwave holography technique to Deep Space Station (DSS) 13. The project goal of obtaining a rigging angle surface rms error of 0.43 mm or better was met. The Jet Propulsion Laboratory-developed holography algorithms enabled a reduction of the surface error of the DSS-13 antenna from the optically set 0.83 mm axial rms error down to 0.40 mm rms, providing an additional 4.1 dB of performance at 32 GHz

    Antenna feed system for receiving circular polarization and transmitting linear polarization

    Get PDF
    An invention is described which provides for receiving a circularly polarized signal from an antenna feed connected to orthogonally spaced antenna elements. It also provides for transmitting a linearly polarized signal through the same feed without switches, and without suffering a 3 dB polarization mismatch loss, using an arrangement of hybrid junctions. The arrangement is comprised of two dividing hybrid junctions, each connected to a different pair of antenna elements and a summing hybrid junction. In one version, a receiver is connected to the summing hybrid junction directly. A diplexer is used to connect a transmitter to only one pair of antenna elements. In another version, designated left and right circularly polarized (LCP and RCP) transmitters are connected to the summing hybrid junction by separate diplexers, and separate LCP and RCP sensitive receivers are connected to the diplexers in order to transmit linearly polarized signals using all four antenna elements while receiving circularly polarized signals as before. An orthomode junction and horn antenna may replace the two dividing hybrid junctions and antenna feed

    Space shuttle pogo active controller design using frequency domain optimization

    Get PDF
    A frequency domain parameter optimization technique was used to design active pogo suppression controls for the space shuttle. The technique uses a conjugate gradient search procedure and is well suited for designing low-order controllers for higher order systems. The shuttle model was a two-pump and six-structural-mode linear model representing a worst-case condition. A promising feedback controller structure was found to be a lead-lag design

    Exact Lagrangian submanifolds in simply-connected cotangent bundles

    Full text link
    We consider exact Lagrangian submanifolds in cotangent bundles. Under certain additional restrictions (triviality of the fundamental group of the cotangent bundle, and of the Maslov class and second Stiefel-Whitney class of the Lagrangian submanifold) we prove such submanifolds are Floer-cohomologically indistinguishable from the zero-section. This implies strong restrictions on their topology. An essentially equivalent result was recently proved independently by Nadler, using a different approach.Comment: 28 pages, 3 figures. Version 2 -- derivation and discussion of the spectral sequence considerably expanded. Other minor change

    Ground Instrumentation for Mariner IV OCCULTATION Experiment

    Get PDF
    Deep Space Instrumentation Facility /DSIF/ GROUND receiver stations for Mariner IV space probe occulation experimen

    Solar dynamic power systems for space station

    Get PDF
    The Parabolic Offset Linearly Actuated Reflector (POLAR) solar dynamic module was selected as the baseline design for a solar dynamic power system aboard the space station. The POLAR concept was chosen over other candidate designs after extensive trade studies. The primary advantages of the POLAR concept are the low mass moment of inertia of the module about the transverse boom and the compactness of the stowed module which enables packaging of two complete modules in the Shuttle orbiter payload bay. The fine pointing control system required for the solar dynamic module has been studied and initial results indicate that if disturbances from the station are allowed to back drive the rotary alpha joint, pointing errors caused by transient loads on the space station can be minimized. This would allow pointing controls to operate in bandwidths near system structural frequencies. The incorporation of the fine pointing control system into the solar dynamic module is fairly straightforward for the three strut concentrator support structure. However, results of structural analyses indicate that this three strut support is not optimum. Incorporation of a vernier pointing system into the proposed six strut support structure is being studied
    corecore