72 research outputs found

    Structural and thermodynamic characterization of the adrenodoxin-like domain of the electron-transfer protein Etp1 from Schizosaccharomyces pombe

    Get PDF
    The protein Etp1 of Schizosaccharomyces pombe consists of an amino-terminal COX15-like domain and a carboxy-terminal ferredoxin-like domain, Etp1(fd), which is cleaved off after mitochondrial import. The physiological function of Etp1(fd) is supposed to lie in the participation in the assembly of iron-sulfur clusters and the synthesis of heme A. In addition, the protein was shown to be the first microbial ferredoxin being able to support electron transfer in mitochondrial steroid hydroxylating cytochrome P450 systems in vivo and in vitro, replacing thereby the native redox partner, adrenodoxin. Despite a sequence similarity of 39% and the fact that fission yeast is a mesophilic organism, thermodynamic studies revealed that Etp1(fd) has a melting temperature more than 20°C higher than adrenodoxin. The three-dimensional structure of Etp1(fd) has been determined by crystallography. To the best of our knowledge it represents the first three-dimensional structure of a yeast ferredoxin. The structure-based sequence alignment of Etp1(fd) with adrenodoxin yields a rational explanation for their observed mutual exchangeability in the cytochrome P450 system. Analysis of the electron exchange with the S. pombe redox partner Arh1 revealed differences between Etp1(fd) and adrenodoxin, which might be linked to their different physiological functions in the mitochondria of mammals and yeast

    Elastic-Net Regularization: Error estimates and Active Set Methods

    Full text link
    This paper investigates theoretical properties and efficient numerical algorithms for the so-called elastic-net regularization originating from statistics, which enforces simultaneously l^1 and l^2 regularization. The stability of the minimizer and its consistency are studied, and convergence rates for both a priori and a posteriori parameter choice rules are established. Two iterative numerical algorithms of active set type are proposed, and their convergence properties are discussed. Numerical results are presented to illustrate the features of the functional and algorithms

    Beyond convergence rates: Exact recovery with Tikhonov regularization with sparsity constraints

    Full text link
    The Tikhonov regularization of linear ill-posed problems with an â„“1\ell^1 penalty is considered. We recall results for linear convergence rates and results on exact recovery of the support. Moreover, we derive conditions for exact support recovery which are especially applicable in the case of ill-posed problems, where other conditions, e.g. based on the so-called coherence or the restricted isometry property are usually not applicable. The obtained results also show that the regularized solutions do not only converge in the â„“1\ell^1-norm but also in the vector space â„“0\ell^0 (when considered as the strict inductive limit of the spaces Rn\R^n as nn tends to infinity). Additionally, the relations between different conditions for exact support recovery and linear convergence rates are investigated. With an imaging example from digital holography the applicability of the obtained results is illustrated, i.e. that one may check a priori if the experimental setup guarantees exact recovery with Tikhonov regularization with sparsity constraints

    Fishing the Molecular Bases of Treacher Collins Syndrome

    Get PDF
    Treacher Collins syndrome (TCS) is an autosomal dominant disorder of craniofacial development, and mutations in the TCOF1 gene are responsible for over 90% of TCS cases. The knowledge about the molecular mechanisms responsible for this syndrome is relatively scant, probably due to the difficulty of reproducing the pathology in experimental animals. Zebrafish is an emerging model for human disease studies, and we therefore assessed it as a model for studying TCS. We identified in silico the putative zebrafish TCOF1 ortholog and cloned the corresponding cDNA. The derived polypeptide shares the main structural domains found in mammals and amphibians. Tcof1 expression is restricted to the anterior-most regions of zebrafish developing embryos, similar to what happens in mouse embryos. Tcof1 loss-of-function resulted in fish showing phenotypes similar to those observed in TCS patients, and enabled a further characterization of the mechanisms underlying craniofacial malformation. Besides, we initiated the identification of potential molecular targets of treacle in zebrafish. We found that Tcof1 loss-of-function led to a decrease in the expression of cellular proliferation and craniofacial development. Together, results presented here strongly suggest that it is possible to achieve fish with TCS-like phenotype by knocking down the expression of the TCOF1 ortholog in zebrafish. This experimental condition may facilitate the study of the disease etiology during embryonic development

    Novel ATP-Independent RNA Annealing Activity of the Dengue Virus NS3 Helicase

    Get PDF
    The flavivirus nonstructural protein 3 (NS3) bears multiple enzymatic activities and represents an attractive target for antiviral intervention. NS3 contains the viral serine protease at the N-terminus and ATPase, RTPase, and helicase activities at the C-terminus. These activities are essential for viral replication; however, the biological role of RNA remodeling by NS3 helicase during the viral life cycle is still unclear. Secondary and tertiary RNA structures present in the viral genome are crucial for viral replication. Here, we used the NS3 protein from dengue virus to investigate functions of NS3 associated to changes in RNA structures. Using different NS3 variants, we characterized a domain spanning residues 171 to 618 that displays ATPase and RNA unwinding activities similar to those observed for the full-length protein. Interestingly, we found that, besides the RNA unwinding activity, dengue virus NS3 greatly accelerates annealing of complementary RNA strands with viral or non-viral sequences. This new activity was found to be ATP-independent. It was determined that a mutated NS3 lacking ATPase activity retained full-RNA annealing activity. Using an ATP regeneration system and different ATP concentrations, we observed that NS3 establishes an ATP-dependent steady state between RNA unwinding and annealing, allowing modulation of the two opposing activities of this enzyme through ATP concentration. In addition, we observed that NS3 enhanced RNA-RNA interactions between molecules representing the ends of the viral genome that are known to be necessary for viral RNA synthesis. We propose that, according to the ATP availability, NS3 could function regulating the folding or unfolding of viral RNA structures

    Quantifying the Link between Anatomical Connectivity, Gray Matter Volume and Regional Cerebral Blood Flow: An Integrative MRI Study

    Get PDF
    Background In the graph theoretical analysis of anatomical brain connectivity, the white matter connections between regions of the brain are identified and serve as basis for the assessment of regional connectivity profiles, for example, to locate the hubs of the brain. But regions of the brain can be characterised further with respect to their gray matter volume or resting state perfusion. Local anatomical connectivity, gray matter volume and perfusion are traits of each brain region that are likely to be interdependent, however, particular patterns of systematic covariation have not yet been identified. Methodology/Principal Findings We quantified the covariation of these traits by conducting an integrative MRI study on 23 subjects, utilising a combination of Diffusion Tensor Imaging, Arterial Spin Labeling and anatomical imaging. Based on our hypothesis that local connectivity, gray matter volume and perfusion are linked, we correlated these measures and particularly isolated the covariation of connectivity and perfusion by statistically controlling for gray matter volume. We found significant levels of covariation on the group- and regionwise level, particularly in regions of the Default Brain Mode Network. Conclusions/Significance Connectivity and perfusion are systematically linked throughout a number of brain regions, thus we discuss these results as a starting point for further research on the role of homology in the formation of functional connectivity networks and on how structure/function relationships can manifest in the form of such trait interdependency

    Efeito da escala de produção nos resultados econômicos da produção de leite B no Estado de São Paulo.

    Get PDF
    Este estudo avaliou os índices zootécnicos e produtivos, os custos de produção e a rentabilidade de quatro sistemas de produção de leite tipo B do estado de São Paulo, que usam o sistema de pastejo intensivo como alimentação volumosa do rebanho no período do verão

    Microbiology-(UK)

    No full text

    Functional expression of human mitochondrial CYP11B2 in fission yeast and identification of a new internal electron transfer protein, etp1

    No full text
    Mitochondrial cytochrome P450 enzymes play a crucial role in the steroid biosynthesis in human adrenals, catalyzing regio- and stereospecific hydroxylations. In search of a new model system for the study of these enzymes, we expressed the human CYP11B2 (aldosterone synthase, P450 aldo) in fission yeast Schizosaccharomyces pombe. Analysis of the subcellular localization of the P450 enzyme by Western blot analysis, fluorescence microscopy, and electron microscopy demonstrated that the mitochondrial localization signal of the human protein is functional in S. pombe. The transformed yeasts show the inducible ability to convert in vivo considerable amounts of 11-deoxycortisol to cortisol and 11-deoxycorticosterone to corticosterone, 18-hydroxycorticosterone, and aldosterone, respectively. Although in mammalian cells, mitochondrial steroid hydroxylases depend for their activity on an electron transport chain that consists of two proteins, adrenodoxin and adrenodoxin reductase, no coexpression of these proteins is needed for efficient substrate conversion by intact fission yeast cells. Searching the fission yeast genome for adrenodoxin homologues, a gene was identified that codes for a protein with an amino terminal domain homologous to COX15 of Saccharomyces cerevisiae and a carboxy terminal ferredoxin domain. It was found that overexpression of this gene significantly enhances steroid hydroxylase activity of CYP11B2 expressing fission yeast cells. Moreover, the bacterially expressed ferredoxin domain of this protein can replace adrenodoxin in a reconstituted steroid hydroxylation assay and transfer electrons from adrenodoxin reductase to a mammalian or a bacterial cytochrome P450. Therefore, we suggest to name this protein etp1 (electron-transfer protein 1)
    • …
    corecore