3 research outputs found

    On the Laplacian and signless Laplacian spectrum of a graph with k pairwise co-neighbor vertices

    Get PDF
    Consider the Laplacian and signless Laplacian spectrum of a graph G of order n, with k pairwise co-neighbor vertices. We prove that the number of shared neighbors is a Laplacian and a signless Laplacian eigenvalue of G with multiplicity at least k− 1. Additionally, considering a connected graph Gk with a vertex set defined by the k pairwise co-neighbor vertices of G, the Laplacian spectrum of Gk, obtained from G adding the edges of Gk, includes l + β for each nonzero Laplacian eigenvalue β of Gk. The Laplacian spectrum of G overlaps the Laplacian spectrum of Gk in at least n − k + 1 places
    corecore