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Consider the Laplacian and signless Laplacian spectrum of a graph

G of order n, with k pairwise co-neighbor vertices. We prove that

the number of shared neighbors is a Laplacian and a signless Lapla-

cian eigenvalue of G with multiplicity at least k − 1. Additionally,

considering a connected graph Gk with a vertex set defined by the

k pairwise co-neighbor vertices of G, the Laplacian spectrum of Gk ,

obtained from G adding the edges of Gk , includes l + β for each

nonzero Laplacian eigenvalue β of Gk . The Laplacian spectrum of G

overlaps the Laplacian spectrum of Gk in at least n − k + 1 places.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we deal with undirected graphs G of order n, V(G) denotes the vertex set and E(G) the
edge set. The set of neighbors of v ∈ V(G) is denoted by NG(v) and its degree by d(v). The maximum

degree of the vertices of a graph G is denoted by �(G). A leaf is a vertex of degree 1. The adjacency

matrix of the graph G is the n × n symmetric matrix A(G) = (aij) where aij = 1 if ij ∈ E(G) and

aij = 0 otherwise. The Laplacian (signless Laplacian) matrix of G is the matrix L(G) = D(G) − A(G)
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Fig. 1. A graph G with a 2-cluster of order 4, S = {6, 7, 8, 9} and the graphs G4 = G + G4, such that G4 = G4[S].

(Q(G) = D(G)+A(G)),whereD(G) is then×ndiagonalmatrixofvertexdegreesofG. ThematricesL(G),
Q(G) and A(G) are all real and symmetric. From Geršgorin’s theorem, it follows that the eigenvalues

of L(G) and Q(G) are nonnegative real numbers. The spectrum of a matrix M is denoted by σ(M)
and, in particular cases of L(G) and Q(G), their spectra are denoted by σL(G) and σQ (G), respectively.

Throughout the paper σL(G) = {μ[i1]
1 , . . . , μ

[ip]
p } (σQ (G) = {q[k1]

1 , . . . , q[kr ]
r }) means that μj (qj) is

a Laplacian (signless Laplacian) eigenvalue with multiplicity ij (kj), for j = 1, . . . , p (j = 1, . . . , r).
As usually, we denote the eigenvalues of L(G) (Q(G)) in non increasing order μ1(G) ≥ · · · ≥ μn(G)
(q1(G) ≥ · · · ≥ qn(G)). For details on the spectral properties of L(G) and Q(G) see, for instance,

[7–10,12,1,3], respectively.

Considering a square matrix A, one of its eigenvalues λ, and a vector u of the corresponding

eigenspace, the pair (λ, u) is called an eigenpair of A. A vertex subset is called independent if its

elements are pairwise non-adjacent. Two vertices in V(G) are co-neighbor vertices if they share the

same neighbors. It is easy to see that if S ⊂ V(G) is a set of pairwise co-neighbor vertices of a graph

G, then S is an independent set of G. According to Merris [12], a cluster of order k of G is a set S of k

pairwise co-neighbor vertices. The degree of a cluster is the cardinality of the shared set of neighbors,

i.e., the common degree of each vertex in the cluster. An l-cluster is a cluster of degree l.

Regarding spectral properties of graphs with co-neighbor vertices, Faria, in [4], introduced the

following result about Laplacian and signless Laplacian eigenvalues of graphs with leaves.

Theorem 1 [4]. Let p and q be the number of leaves of G and the number of neighbors associated to these

leaves, respectively. Then 1 is a Laplacian (signless Laplacian) eigenvalue of G with multiplicity at least

p − q ≥ 0.

Let k be an integer greater than 1. Taking the above result as a motivation, Theorem 1 is generalized

for graphs G with a cluster of order k. Moreover, considering a cluster of order k, S ⊂ V(G), Gk

is the supergraph obtained from G, adding t edges between distinct pairs of vertices in S, where

1 � t � k(k−1)
2

. From now on, this operation is denoted by

Gk = G + Gk, (1)

where Gk is the subgraph of Gk induced by S, that is, Gk = Gk[S]. Notice that V(Gk) = V(G) and

E(Gk) = E(G) ∪ E(Gk). In Fig. 1 a graph G with a 2-cluster of order 4, S = {6, 7, 8, 9}, and a graph

G4 = G + G4, with G4 = G4[S] are depicted.
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The main result of this paper is the determination of Laplacian and signless Laplacian eigenvalues

of Gk (for which the induced subgraph Gk must be p-regular in the signless Laplacian case). In fact,

assuming that S is an l-cluster of order k, andβ �= 0 (β �= 2p) is a Laplacian (signless Laplacian) eigen-

value of Gk , it is deduced that l + β is a Laplacian (signless Laplacian) eigenvalue of Gk . Furthermore,

in the Laplacian spectrum case, we may conclude that at least n − k + 1 Laplacian eigenvalues of G

are also eigenvalues of Gk and then the Laplacian spectrum of Gk is completely characterized from the

Laplacian spectrum of G and Gk .

As it is statedby the following lemma,despite the labelingof S, theoperationdefinedby (1)produces

isomorphic graphs.

Lemma 1. Let G be a graph with a cluster S ⊂ V(G) of order k. If Gk and G′
k are connected isomorphic

graphs of order k such that V(Gk) = V(G′
k) = S, then Gk = G + Gk is isomorphic to G′k = G + G′

k.

2. Laplacian and signless Laplacian eigenvalues of graphs with pairwise co-neighbor vertices

Now, considering a graph G, with an l-cluster S of order k, we prove that l is an eigenvalue with

multiplicity at least k − 1 for both matrices, L(G) and Q(G).
From now on, xq denotes a vector with q entries, in particular, 1q denotes the all-one vector with q

entries. Additionally, G− S is the subgraph of G obtained by deleting the above k pairwise co-neighbor

vertices of the cluster S.

Theorem 2. Let G be a graph with an l-cluster S of order k. Then l is a Laplacian and a signless Laplacian

eigenvalue of G with multiplicity at least k − 1.

Proof. Let S = {vi}ki=1 be the l-cluster. Assuming that NG(v1) = {vk+i}li=1, we have

M(G) =

⎛
⎜⎜⎜⎝

lIk δ1k1
T
l 0k;n−k−l

δ1l1
T
k

0n−k−l;k

⎛
⎝ kIl 0l;n−k−l

0n−k−l;l 0n−k−l;n−k−l

⎞
⎠ + M(G − S)

⎞
⎟⎟⎟⎠ , (2)

where δ =
⎧⎨
⎩ −1, if M(G) = L(G) and then M(G − S) = L(G − S)

1, if M(G) = Q(G) and thenM(G − S) = Q(G − S)
and 0p;q is the all zero matrix

p×q. Therefore, thekfirst rowsof thematrixM(G)−lI are equal and then rank(M(G)−lI) ≤ n−(k−1).
Hence, the null space ofM(G) − lI has dimension not less than k − 1 and therefore, l is an eigenvalue

of M(G) with multiplicity at least k − 1. �

Remark 1. Taking into account the labeling of the vertices in Theorem 2 and the matrix M(G) in (2),

it is immediate that

⎛
⎝l,

⎡
⎣ xk

0n−k

⎤
⎦

⎞
⎠ is an eigenpair forM(G) for all xk ∈ R

k\{0k}, with xTk1k = 0.

As immediate application of Theorem 2, considering a complete bipartite graph Kr,s, it follows that

each color class of vertices is a vertex subset of pairwise co-neighbors. Therefore, despite the Laplacian

spectrum of Kr,s be well known, we may conclude that r is a Laplacian eigenvalue with multiplicity

at least s − 1 and s is a Laplacian eigenvalue with multiplicity at least r − 1. Therefore, taking into

account that

1. the trace of the Laplacian matrix is 2rs,

2. the Laplacian matrix has 0 as eigenvalue,

3. the Laplacian and signless Laplacian matrices have the same spectrum,
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then the unknown eigenvalue is r + s. Thus

σL(Kr,s) = σQ (Kr,s) = {0, r[s−1], s[r−1], r + s}.
Therefore, we have the following interesting corollary of Theorem 2.

Corollary 1. If the complete bipartite graph Kr,s, withmax{r, s} = s > 1, is a subgraph of a graph G, then

μ1(G) ≥ r + s, (3)

μr(G) ≥ s, (4)

μr+s−1(G) ≥ r. (5)

In particular, μ2(G) ≥ s.

Proof. As above described, σL(Kr,s) = {0, r[s−1], s[r−1], r + s}. Assuming, without loss of generality,

that the subgraph Kr,s of G is defined by the first r + s vertices of G, we may say that the Laplacian

matrix L(G) is such that

L(G) = L(H) +
⎛
⎝ L(Kr,s) 0

0 0

⎞
⎠ , (6)

where H is the subgraph of G such that V(H) = V(G) and E(H) = E(G)\E(Kr,s). Denoting B =⎛
⎝ L(Kr,s) 0

0 0

⎞
⎠, since the eingenvalues of a matrix do not decrease whenever a positive semidefinite

matrix is added and the matrix L(H) is positive semidefinite, the result follows. �

Notice that since μ1(G) is not greater than the order n of G, if G has a bipartite complete graph Kr,s

as a subgraph, then

r + s ≤ μ1(G) ≤ n.

On the other hand since q1(G) ≥ μ1(G), see [3], the inequality (3) is also valid for q1(G). As another
direct application of Corollary 1, the well know inequality μ1(G) ≥ �(G) + 1 (see, for instance [12])

can also be obtained, considering � = �(G) and K1,� as a subgraph of G.

2.1. The Laplacian case

Before the main result of this subsection it is worth to consider the following lemmas.

Lemma 2 [11]. Consider the square matrices A and B of order n with spectra {α1, . . . , αn} and
{β1, . . . , βn}, respectively. If AB = BA, then there exists a permutation i1, . . . , in of 1, . . . , n such that

the spectrum of A + B is {α1 + βi1 , . . . , αk + βik , . . . , αn + βin}.
Lemma 3. If we consider the matrix

K =
⎛
⎝ L(Gk) 0k;n−k

0n−k;k 0n−k;n−k

⎞
⎠ , (7)

then L(Gk) = L(G) + K and L(G)K = KL(G).
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Proof. The proof follows immediately from the structure of the matrices L(G) and K , taking into

account that

L(G) =

⎛
⎜⎜⎜⎝

lIk −1k1
T
l 0k;n−k−l

−1l1
T
k

0n−k−l;k
X

⎞
⎟⎟⎟⎠ ,

where X is the diagonal block matrix of order n − k in (2), with M(G − S) = L(G − S). �

Lemmas 2 and 3 imply the following corollary.

Corollary 2. Consider a graphGwith an l-cluster of order k, S = {vi}ki=1, sharing the l neighbors {vk+j}lj=1,

a graph Gk such that V(Gk) = S and the matrix K defined in (7). If Gk is defined as in (1), reordering the n

eigenvalues βi in σ(K), it follows that

σL(G
k) = {αi + βi : i = 1, . . . , n} , (8)

where α1, . . . , αn are the Laplacian eigenvalues of G. Moreover,

L(Gk)L(G) = L(G)L(Gk). (9)

Now, we are able to deduce how the Laplacian eigenvalues of Gk are modified in function of Gk .

Theorem 3. Let G be a graph with an l-cluster S of order k. Assume that Gk is a connected graph such that

V(Gk) = S, Gk = G + Gk and

� = {l + β : β ∈ σL(Gk)\ {0}}

is a multiset. Then σL(G
k) overlaps σL(G) in n − k + 1 places and the elements of � are the remaining

eigenvalues in σL(G
k).

Proof. Let S = {vi}ki=1 be the cluster, sharing the l neighbors {vk+i}li=1. Let K be thematrix in (7). Since

0 ∈ σ(K)withmultiplicity at least n−k+1, using (8), it is immediate that at least n−k+1 Laplacian

eigenvalues of G overlap the Laplacian eigenvalues of Gk . We just need to prove that the elements of

� are the remaining eigenvalues in σL(G
k).

Taking into account (9), the matrices L(G) and L(Gk) are simultaneously diagonalizable [11, Theorem

1.3.12]. Therefore, assuming that u =

⎛
⎜⎜⎜⎝

xk

yl

zn−k−l

⎞
⎟⎟⎟⎠ is one of the n chosen common eigenvectors of

L(G) and L(Gk), from L(Gk)u = λu, L(G)u = λ′u and L(Gk) = L(G) + K , the following system of

equations are obtained:

lxk + L(Gk)xk − (1Tl yl)1k = λxk, (10)

lxk − (1Tl yl)1k = λ′xk, (11)⎛
⎝ −(1Tkxk)1l + kyl

0n−k−l

⎞
⎠ + L(G − S)

⎛
⎝ yl

zn−k−l

⎞
⎠ = λ

⎛
⎝ yl

zn−k−l

⎞
⎠ , (12)
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⎛
⎝ −(1Tkxk)1l + kyl

0n−k−l

⎞
⎠ + L(G − S)

⎛
⎝ yl

zn−k−l

⎞
⎠ = λ′

⎛
⎝ yl

zn−k−l

⎞
⎠ . (13)

Notice that L(G) is the matrix M(G) in (2), with δ = −1. By subtracting the Eq. (11) from Eq. (10),

we may conclude that

L(Gk)xk = (λ − λ′)xk. (14)

• If λ = λ′, then λ ∈ σL(G
k)∩σL(G) and from (14), L(Gk)xk = 0. This implies that xk = γ 1k , where

γ is a nonzero scalar if xk is an eigenvector of L(Gk) (since the connectivity of Gk implies that 0 is

a simple eigenvalue of L(Gk)).• If λ �= λ′, then (14) is equivalent to L(Gk)xk = βxk,withβ = λ−λ′ �= 0which implies 1Tkxk = 0.

Moreover, from the equalities (12) and (13), it follows that

⎛
⎝ yl

zn−k−l

⎞
⎠ =

⎛
⎝ 0l

0n−k−l

⎞
⎠ and then

xk �= 0, that is, xk is an eigenvector of L(Gk) orthogonal to the all one eigenvector 1k . Therefore,

the eigenvector u is of the type u =
⎛
⎝ ϑ

0n−k

⎞
⎠, where ϑ is an eigenvector of L(Gk), associated to an

eigenvalue β �= 0. From equality (11), it follows that λ′ = l and so λ = l + β .

From the above analysis, we may conclude that L(G) and L(Gk) are sharing two types of eigenvectors.

The eigenvectors

⎛
⎜⎜⎜⎝

γ 1k

yl

zn−k−l

⎞
⎟⎟⎟⎠ correspond to the eigenvalues λ ∈ σL(G

k) ∩ σL(G) and the eigenvectors

⎛
⎝ ϑ

0n−k

⎞
⎠ correspond to the Laplacian eigenvalues l+β of Gk (l ∈ σL(G) and β ∈ σL(Gk)−{0}). Since

L(Gk) has the k − 1 eigenpairs (βi, ϑ
i), with βi �= 0, for i = 1, . . . , k − 1, we have k − 1 shared

eigenvectors

⎛
⎝ ϑ i

0n−k

⎞
⎠ , for i = 1, . . . , k−1. Therefore, taking into account (8) in Corollary 2, we have

at leastn−k+1sharedeigenvectors

⎛
⎜⎜⎜⎝

γ 1k

yl

zn−k−l

⎞
⎟⎟⎟⎠whichareorthogonal to

⎛
⎝ ϑ i

0n−k

⎞
⎠, for i = 1, . . . , k−1.

Comparing both cardinalities with the order of L(Gk) and L(G), the Laplacian eigenvalues of Gk which

can be different from the Laplacian eigenvalues of G are just the k − 1 elements of �. �

Remark 2. Assuming thatG is a graphwith an l-cluster S of order k, consider two connected graphsGk

andG′
k definedon S. Fromtheproof of Theorem3,weconclude that theLaplacian spectraofGk = G+Gk

and G′k = G+G′
k overlap in n− k+ 1 places. Furthermore, the remaining Laplacian eigenvalues of Gk

and G′k , β + l (with β ∈ σL(Gk)\{0}) and β ′ + l (with β ′ ∈ σL(G
′
k)\{0}), respectively, replace k − 1

of the positions of the eigenvalue l of G (see Remark 1).

Taking into account that a graph G is called Laplacian integral if its Laplacian eigenvalues are all

integers, it is immediate to conclude the following corollary from Theorem 3.

Corollary 3. Let G be a graph with an cluster S of order k, and Gk a connected graph such that V(Gk) = S.

If G and Gk are Laplacian integral graphs, then Gk = G + Gk is also Laplacian integral.
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Other interesting consequences are related with the algebraic connectivity, the largest Laplacian

eigenvalue and the Laplacian spread (defined below) of some families of graphs.

Definition1. TheLaplacianspreadof agraph is thedifferencebetween the largest Laplacianeigenvalue

and the algebraic connectivity.

In fact, considering the graph G = Kr,s on the vertices {vi}r+s
i=1 and a connected graph Gr , such that

V(Gr) = S, where S = {v1, . . . , vr} (an s-cluster of order r in G), then we may conclude the following

result.

Theorem 4. If r ≤ s, G = Kr,s and Gr is a connected graph defined on the vertex subset of r pairwise

co-neighbors of G, then the graphs G and Gr = G + Gr have the same largest Laplacian eigenvalue r + s,

the same algebraic connectivity r and the same Laplacian spread s.

Proof. By Theorem 3

σL(G
r) = � ∪ (σL(G)\{s[r−1]}),

where � = {s + β : β ∈ σL(Gr)\ {0}}, with β ≤ r (since, as it is well known, the spectral radius

of the Laplacian matrix of any graph is not greater than its order) and {s[r−1]} is the multiset with

s repeated r − 1 times (see Remark 2). Since σL(G) = {0, r[s−1], s[r−1], r + s} we obtain σL(G
r) =

{0, r[s−1], r+s}∪�. Therefore, the largest eigenvalue ofG andGr is r+s and, since r ≤ s, the algebraic

connectivity of both graphs coincide and is r. Moreover, the Laplacian spread of G and Gr is s. �

2.2. The signless Laplacian case

In the next results we deal with the concept of main (non-main) eigenvalue. This concept was

introduced in [2] and has been largely used in the context of adjacency matrices. A good survey on

this topic was published in [13]. Herein, we extend this concept also to signless Laplacian matrices.

Given a graph G, an eigenvalue λ ∈ σQ (G) is non-main if the corresponding eigenspace is orthogonal

to the all one vector, 1, otherwise it ismain. For instance, in the graphs considered in Theorem 2, if the

signless Laplacian eigenvalue l has multiplicity exactly k − 1, then l is non-main. In fact, taking into

account the structure of the matrix Q(Gk), it is immediate that ξi = ε1 − εi, for i = 2, . . . , k, where

εi is the ith vector of the canonical basis of R
n, are the eigenvectors of Q(Gk) corresponding to l.

Theorem 5. Let G be a graph with an l-cluster S = {vi}ki=1 of order k. If Gk is a graph such that V(Gk) = S

and Gk = G + Gk, then σQ (Gk) includes the multiset

{
l + β : β ∈ σQ (Gk) and it is non-main

}
.

Furthermore, any main eigenvalue γ of Q(Gk), with multiplicity m > 1, produces an eigenvalue l + γ of

Q(Gk), with multiplicity m − 1.

Proof. Taking into account that

Q(Gk) =

⎛
⎜⎜⎜⎝

lIk + Q(Gk) 1k1
T
l 0k;n−k−l

1l1
T
k

0n−k−l;k

⎛
⎝ kIl 0l;n−k−l

0n−k−l;l 0n−k−l;n−k−l

⎞
⎠ + Q(G − S)

⎞
⎟⎟⎟⎠ ,
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let us assume that xk is an eigenvector of Q(Gk) associated to the non-main eigenvalue β of Q(Gk).

Since xk is orthogonal to 1k , it is immediate that

⎛
⎝ xk

0n−k

⎞
⎠ is an eigenvector of Q(Gk) associated to

the eigenvalue l + β . The second part is direct consequence of the fact that if a main eigenvalue γ
has multiplicity m > 1, then the corresponding eigenspace has at least m − 1 linearly independent

eigenvectors xk orthogonal to the all one vector 1k . �

As immediate consequence of Theorem 5, we have the following corollary.

Corollary 4. If Gk is a p-regular graph defined on an l-cluster of order k of a graph G, and Gk = G + Gk,

then σQ (Gk) includes the multiset
{
l + β : β ∈ σQ (Gk)\{2p}}.

Now, we recall the Fiedler’s lemma which was introduced in [5] in the context of the inverse

eigenvalue problem.

Lemma 4 [5]. Let A and B be symmetric matrices of orders m and n, respectively, with corresponding

eigenpairs (αi, ui), i = 1, . . . ,m and (βi, vi), i = 1, . . . , n, respectively. Suppose that ‖u1‖ = 1 =
‖v1‖. Then, for any ρ the matrix

C =
⎛
⎝ A ρu1v

T
1

ρv1u
T
1 B

⎞
⎠

has eigenvalues α2, . . . , αn, β2, . . . , βm, γ1, γ2, where γ1, γ2 are eigenvalues of

Ĉ =
⎛
⎝α1 ρ

ρ β1

⎞
⎠ .

From now on the matrix Ĉ referred in the above lemma will be called the Fiedler matrix.

Theorem 6. Consider the complete bipartite graph G = Kr,s, with vertex set {vi}r+s
i=1 and let Gr be a

connected p-regular graph defined on the s-cluster of order r, {v1, . . . , vr} of G. If Gr = G + Gr, then

{r[s−1]} ⊂ σQ (G) ∩ σQ (Gr)

and the remainder signless Laplacian eigenvalues of Gr are the elements of the multiset {s + γ : γ ∈
σQ (Gr)\{2p}} ∪

{
r+s+2p±

√
(r+s+2p)2−8pr

2

}
.

Proof. Since {vr+1, . . . , vr+s} is an r-cluster of order s of G (and also in Gr), each one of them with r

neighbors, according to Theorem 2, r is a signless Laplacian eigenvalue of G with multiplicity at least

s−1. On the other hand, considering the signless Laplacianmatrix Q(Gr) =
⎛
⎝sIr + Q(Gr) 1r1

T
s

1s1
T
r rIs

⎞
⎠ and

applying the Fiedler’s lemma, with ρ = √
rs, it follows that

σQ (Gr) = σ(sIr + Q(Gr))\ {s + 2p} ∪
{
r
[s−1]

}
∪ σ(Ĉ),

where the Fiedler matrix Ĉ is such that Ĉ =
⎛
⎝s + 2p

√
rs√

rs r

⎞
⎠. Thus the result follows. �
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Given two graphs G and H, the join of these graphs, G ∨ H, is such that V(G ∨ H) = V(G) ∪ V(H)
and E(G ∨ H) = E(G) ∪ E(H) ∪ {xy : x ∈ V(G), y ∈ V(H)}. Theorem 6 can be extended to the

determination of the signless Laplacian spectrum of the join of a p-regular graph of order r with a

q-regular of order s, respectively, from their signless Laplacian spectra and the spectrum of the Fiedler

matrix Ĉ =
⎛
⎝s + 2p

√
rs√

rs r + 2q

⎞
⎠, as it is stated in the following corollary (a similar result was published

in [6, Theorem 2.1]).

Corollary 5. Let Gr and Gs be two regular graphs order r and s, respectively. Assuming that Gr is p-regular
and Gs is q-regular, then

σQ (Gr ∨ Gs) = {
s + θ : θ ∈ σQ (Gr)\ {2p}} ∪ {

r + ζ : ζ ∈ σQ (Gs)\ {2q}}

∪
⎧⎨
⎩
r + s + 2(p + q) ±

√
(r + s + 2(p + q))2 − 8(pr + qs + 2pq)

2

⎫⎬
⎭ .

Notice that Gr ∨ Gs can be obtained from G = Kr,s, defining Gr on the vertex subset of r pairwise

co-neighbors of G and defining Gs on the vertex subset of s pairwise co-neighbors of G. Therefore,

Gr ∨ Gs = (G + Gr) + Gs = Gr + Gs.

From Theorem 6 and Corollary 5, we may conclude that the overlapping of the Laplacian spectrum

of G and Gk , mentioned in Theorem 3, does not holds for the signless Laplacian case.
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