383 research outputs found
Entanglement trapping in a non-stationary structured reservoir
We study a single two-level atom interacting with a reservoir of modes
defined by a reservoir structure function with a frequency gap. Using the
pseudomodes technique, we derive the main features of a trapping state formed
in the weak coupling regime. Utilising different entanglement measures we show
that strong correlations and entanglement between the atom and the modes are in
existence when this state is formed. Furthermore, an unexpected feature for the
reservoir is revealed. In the long time limit and for weak coupling the
reservoir spectrum is not constant in time.Comment: 10 pages, 16 figure
Population trapping due to cavity losses
In population trapping the occupation of a decaying quantum level keeps a
constant non-zero value. We show that an atom-cavity system interacting with an
environment characterized by a non-flat spectrum, in the non-Markovian limit,
exhibits such a behavior, effectively realizing the preservation of
nonclassical states against dissipation. Our results allow to understand the
role of cavity losses in hybrid solid state systems and pave the way to the
proper description of leakage in the recently developed cavity quantum
electrodynamic systems.Comment: 4 pages, 3 figures, version accepted for publication on Phys. Rev.
Sudden death and sudden birth of entanglement in common structured reservoirs
We study the exact entanglement dynamics of two qubits in a common structured
reservoir. We demonstrate that, for certain classes of entangled states,
entanglement sudden death occurs, while for certain initially factorized
states, entanglement sudden birth takes place. The backaction of the
non-Markovian reservoir is responsible for revivals of entanglement after
sudden death has occurred, and also for periods of disentanglement following
entanglement sudden birth.Comment: 4 pages, 2 figure
Environment-dependent dissipation in quantum Brownian motion
The dissipative dynamics of a quantum Brownian particle is studied for
different types of environment. We derive analytic results for the time
evolution of the mean energy of the system for Ohmic, sub-Ohmic and super-Ohmic
environments, without performing the Markovian approximation. Our results allow
to establish a direct link between the form of the environmental spectrum and
the thermalization dynamics. This in turn leads to a natural explanation of the
microscopic physical processes ruling the system time evolution both in the
short-time non-Markovian region and in the long-time Markovian one. Our
comparative study of thermalization for different environments sheds light on
the physical contexts in which non-Markovian dissipation effects are dominant.Comment: 10 pages, 6 figures, v2: added new references and paragraph
Tripartite entanglement dynamics in a system of strongly driven qubits
We study the dynamics of tripartite entanglement in a system of two strongly
driven qubits individually coupled to a dissipative cavity. We aim at
explanation of the previously noted entanglement revival between two qubits in
this system. We show that the periods of entanglement loss correspond to the
strong tripartite entanglement between the qubits and the cavity and the
recovery has to do with an inverse process. We demonstrate that the overall
process of qubit-qubit entanglement loss is due to the second order coupling to
the external continuum which explains the exp[-g^2 t/2+g^2 k t^3/6+\cdot] for
of the entanglement loss reported previously.Comment: 9 pages, 5 figure
Microscopic derivation of the Jaynes-Cummings model with cavity losses
In this paper we provide a microscopic derivation of the master equation for
the Jaynes-Cummings model with cavity losses. We single out both the
differences with the phenomenological master equation used in the literature
and the approximations under which the phenomenological model correctly
describes the dynamics of the atom-cavity system. Some examples wherein the
phenomenological and the microscopic master equations give rise to different
predictions are discussed in detail.Comment: 9 pages, 3 figures New version with minor correction Accepted for
publication on Physical Review
Dynamics of Entanglement and Bell-nonlocality for Two Stochastic Qubits with Dipole-Dipole Interaction
We have studied the analytical dynamics of Bell nonlocality as measured by
CHSH inequality and entanglement as measured by concurrence for two noisy
qubits that have dipole-dipole interaction. The nonlocal entanglement created
by the dipole-dipole interaction is found to be protected from sudden death for
certain initial states
Revealing memory effects in phase-covariant quantum master equations
We study and compare the sensitivity of multiple non-Markovianity indicators for a qubit subjected to general phase-covariant noise. For each of the indicators, we derive analytical conditions to detect the dynamics as non-Markovian. We present these conditions as relations between the time-dependent decay rates for the general open system dynamics and its commutative and unital subclasses. These relations tell directly if the dynamics is non-Markovian w.r.t.. each indicator, without the need to explicitly derive and specify the analytic form of the time-dependent coefficients. Moreover, with a shift in perspective, we show that if one assumes only the general form of the master equation, measuring the non-Markovianity indicators gives us directly non-trivial information on the relations between the unknown decay rates
Cavity losses for the dissipative Jaynes-Cummings Hamiltonian beyond Rotating Wave Approximation
A microscopic derivation of the master equation for the
Jaynes-Cummings model with cavity losses is given, taking into account the
terms in the dissipator which vary with frequencies of the order of the vacuum
Rabi frequency. Our approach allows to single out physical contexts wherein the
usual phenomenological dissipator turns out to be fully justified and
constitutes an extension of our previous analysis [Scala M. {\em et al.} 2007
Phys. Rev. A {\bf 75}, 013811], where a microscopic derivation was given in the
framework of the Rotating Wave Approximation.Comment: 12 pages, 1 figur
- …