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Abstract
We study and compare the sensitivity ofmultiple non-Markovianity indicators for a qubit subjected to
general phase-covariant noise. For each of the indicators, we derive analytical conditions to detect the
dynamics as non-Markovian.We present these conditions as relations between the time-dependent
decay rates for the general open systemdynamics and its commutative and unital subclasses. These
relations tell directly if the dynamics is non-Markovianw.r.t.each indicator, without the need to
explicitly derive and specify the analytic formof the time-dependent coefficients.Moreover, with a
shift in perspective, we show that if one assumes only the general formof themaster equation,
measuring the non-Markovianity indicators gives us directly non-trivial information on the relations
between the unknowndecay rates.

1. Introduction

Open quantum systems theory allows us to investigate the effects of environmental noise on the temporal
behaviour of quantum systems. This general theoretical framework permits not only to tackle fundamental open
questions, such as the quantummeasurement problem, but it also has practical applications to quantum
technologies.Modelling and understanding the loss of quantumproperties caused by the interaction between
quantumdevices and their surroundings is, indeed, a pre-requisite to develop strategies to protect them, hence
prolonging their quantum-enhanced efficiency.

The dynamics of open quantum systems can be divided into twomain categories based on the specificway in
which they exchange informationwith the environment.Markovian open quantum systems are characterized
by a continuous andmonotonic loss of information caused by themonitoring action of the environment.
Generally,Markovian dynamics occurs when the interaction between system and environment is sufficiently
weak and the environment correlations are short-living [1]. Non-Markovian open quantum systems, on the
contrary, displaymemory effects whichmanifest themselves as information backflow and/or partial return of
previously lost quantumproperties [2–4]. Several different quantifiers of information have been used to describe
non-Markovianity in terms of information flow. For a comprehensive review of the different physical
interpretations of non-Markovianity and how they relate to each other, see [5].

The theoretical analysis of non-Markovian dynamics is undoubtedlymore demanding than theMarkovian
case, not only because the correspondingmaster equation ismore complicated to solve both analytically and
numerically, but also andmost importantly becausewe lack a general theorem guaranteeing the physicality of
themathematical solution of themaster equation. In other words a generalization of thewell-knownGorini–
Kossakowski–Sudarshan–Lindblad (GKSL) theorem [6, 7] to non-Markovian systems is still unknown.
Nonetheless, with the advance of experimental solid-state platforms for quantum technologies, where the noise
is generally non-Markovian, andwith the development of sophisticated reservoir engineering techniques,
investigations on non-Markovian open quantum systems have become highly topical [8–12].
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Themodern approach to non-Markovian dynamics focuses on the physical characterization ofmemory
effects and describes them in terms of a partial, and generally temporary, recovery of previously lost information.
Within quantum information theory, several quantities are used tomeasure the amount of information stored
in a quantum system, but only some of them satisfy the physical requirements needed to properly describe
information flow andmemory effects [13, 14]. Perhaps themost important of such requirements is the so-called
contractivity property according towhich, in presence of environmental noise, the amount of information
present in the system at the initial time is always greater or equal to the amount of information at a subsequent
time t.

Examples of quantifiers that are contractive under completely positive and trace preserving (CPTP)maps are
trace distance, relative entropy, Fisher information, quantummutual information, fidelity, coherent
information and so on and so forth [13–18]. Consequently, these quantities have been used to define different
indicators of non-Markovianity [16–20, 42].Whenever the dynamics of such information quantifiers shows
non-monotonic behaviour, one interprets the partial return of information as amanifestation ofmemory effects
and says that the time evolution is non-Markovian. These indicators of non-Markovianity, however, do not
always coincide and,moreover, they are generally difficult to calculate since they require at least the knowledge
of the full solution of themaster equation.

In this paperwe show that, for themost general formof phase-covariant single qubit dynamics, one can
bypass the problemof solving themaster equation and directly identify theMarkovian or non-Markovian
character of the dynamics, as detected by a given indicator, by verifying certain simple inequalities on the decay
rates appearing in themaster equation.We apply this finding to several recently introduced non-Markovianity
indicators andwe use this approach tomake a comprehensive comparison of their sensitivity. Since our
approach does not depend on the specification of the analytic formof the time-dependent decay rates, it can be
applied in a variety of physical situations, such as those considered in [21–27].

The paper is structured as follows. In section 2we introduce the open quantum systemmodel and recall
some of its properties. In section 3we introduce the non-Markovianity indicators presented and derive some
mathematical properties that will be useful to characterizememory effects. Section 4 contains our results,
namely the inequalities on the decay rates identifying non-Markovianity. Finally in section 5we summarize our
results, compare thefindings of the previous section and present conclusions.

2.Master equations and physicalmodels

Let us begin by recalling some general definitions and properties on open quantum systems theory.We consider
a time-localmaster equation of the form

 år
r g r r= - + -⎜ ⎟⎛

⎝
⎞
⎠

( ) [ ( ) ( )] ( ) ( ) { ( )} ( )† †t

t
t H t t A t A A A t

d

d

i
,

1

2
, , 1

i
i i i i i

whereH(t) is the systemHamiltonian,Ai are the Lindblad or jumpoperators and the time-dependent real-
valued functions γi(t) are the decay rates. The solution of themaster equation defines the dynamicalmap
ρ(t)=Φt (ρ (0)), with F =0 .

Generally, amap is called k-positive if the compositemap F Ät k, where k is the dimensionality of the
ancillaryHilbert space and k its identity operator, is positive. If F Ät k is positive for all k�0 and for all t, then
we say that the dynamicalmap is completely positive. A dynamicalmapΦt is calledCP-divisible (P-divisible) if
the propagatorVt,s, defined by

F = F◦ ( )V , 2t t s s,

is completely positive (positive) for all t�s�0 [1].
Using theGKSL theoremwe can immediately draw general conclusions on open quantum systems described

by amaster equation of the formof equation (1): If γi(t) are constant and positive, the resulting dynamicalmap is
a semigroup and the solution is always physical, i.e., CPTP [6]. This result still holds for non-negative time-
dependent γi(t), in this case the dynamicalmap is not a semigroup butCP-divisible [28].We can therefore
generally infer whether the dynamics isMarkovian (CP-divisible) or not directly by looking at the decay rates
appearing in themaster equation. If at least one of the the decay rates γi(t) attains, even if temporarily, negative
values, then the dynamicalmap is not CP-divisible and the physicality conditions becomemore
complicated [29].

CP-divisibility has been proposed as the definition forMarkovianity in open quantum systems [2, 17, 18].
Despite its clearmathematical formulation, in general, detecting the violation of theCP-divisibility condition is
not experimentally straightforward. A hierarchy of non-Markovianity indicators, based on the violation of
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k-divisibility, have been introduced and the extreme case of essentially non-Markovianmaps have been
experimentally studied [30].

In the followingwe review some non-Markovianity indicators based on quantifiers of information on the
system.We recall that, when any of these indicators display non-monotonic behaviour, indicating the presence
ofmemory effects, we can conclude that the dynamicalmap is not CP-divisible. However, there can be cases in
which the indicators display amonotonic behaviour but still themap is not CP-divisible.

2.1.Dissipation, heating, and pure dephasing dynamics
Weconsider themost general class ofmaster equations describing phase-covariant noise. As shown in [31], all
physicalmaster equations for a single qubit phase-covariant dynamics are of the form:

r w
s r

g
r

g
r

g
r= - + + +
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where

r s r s s s r= -+ - - +( ( )) ( ) { ( )} ( )L t t t
1

2
, , 41

r s r s s s r= -- + + -( ( )) ( ) { ( )} ( )L t t t
1

2
, , 52

r s r s r= -( ( )) ( ) ( ) ( )L t t t , 6z z3

whereσ±=(σx±iσy)/2 andσx,σy andσz are the Pauli operators.Here γ1(t), γ2(t), and γ3(t) correspond to
heating, dissipation and pure dephasing, respectively. In [32], it was shown, that the general spin-boson time-
convolutionlessmaster equation reduces exactly to (3)when applying the secular approximation, without Born–
Markov approximation. The necessary and sufficient conditions for complete positivity of the general solutions
of equation (3)were studied in [29]. For arbitrary single qubit density operator ρ(0), the solution of equation (3)
is given by
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Themaster equation of equation (3) leads to commutative dynamics,meaningΦt ◦Φs=Φs ◦Φt, for any s,
t�0, iff γ1(t)=γ(t) and γ2(t)=κγ(t), where 0�κ�14. In the commutative case, equations (10) and (12)
simplify to

ò
k

g t tG =
+

k( ) ( ) ( )t
1

2
d , 14

t

0

k
k

=
+

-Gk( ) ( ) ( )( )G t
1

e 1 . 15t

Wenotice the dynamics is unital,meaningΦt satisfying  F =( )1 2 1 2t , where  is the identity operator,
iff it is commutative andκ=1. For these choices, themaster equation reduces to

3
This solution is trace preserving only for trace one operators. To generalize this to all Hermitian operators, the solution is

r= -( ) [ ( )] ( )P t P tTr 00 1 and r=( ) [ ( )] ( )G t G tTr 0 . In this paper, it is sufficient to focus just on trace one preservingmaps.
4
In generalκ could be any positive number.However, we can restrictκä [0, 1], because the case ofκ>1would again correspond to the

choice of γ1(t)=κ×γ(t) and γ2(t)=γ(t), whereκä [0, 1]. This choice affects the resulting dynamics, but does not change the results in
this paper. Negativeκ violates theCP conditions of [29].
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The Lindblad operators in equation (16) are the Paulimatrices, and thus the dynamicalmap is alsoHermitian,
meaning *F = Ft t , for all >t 0, where *Ft denotes the dualmap ofΦ.We note that the dynamicalmap (7) is
Hermitian exactly in the unital case.

2.2. Always physical phenomenologicalmodel
For the sake of concreteness, wewill consider in the following also a specificmodel,firstly introduced in [29],
which has the nice features of satisfying always the complete positivity conditions and, in certain limits,
reproducing the correctMarkovianmaster equation (with positive and constant decay rates). Themodel
assumes a certain time dependency for the three decay rates appearing in themaster equation (3), parameterized
by two positive numbersR and s. Specifically, thefirst two decay rates are given by

g =( ) ( ) ( )t Nf t2 , 191

g = +( ) ( ) ( ) ( )t N f t2 1 , 202

where
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2 Re , 21
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R t
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, 22t 2

whereR depends on both the couplingwith the environment and the environmental spectral properties, and
w= - -( ) [ ( ) ]N T kTexp 10

1 is themean number of excitations in themodes of the thermal environment,
withT the temperature andω0 the Bohr frequency .

Note that, forR<1/2, the decay rates γ1(t) and γ2(t) are always positive, while forR>1/2 they become
negative for certain time intervals. The pure dephasing rate is given by [29]

òg w w w w=( ) ( ) ( ) ( ) ( )t J k T t2 d coth sin , 23B3

where the spectral density J(ω) is

w
nw
w

= w w-( ) ( )J e , 24
s

c
s

c

withωc the cut-off frequency and ν a dimensionless coupling constant. For pure dephasing, that is when
γ1(t)=γ2(t)=0,Markovianity of thismodel depends on a critical value scrit(T) of theOhmic parameter s, the
systembeing non-Markovianwhen s>scrit(T). The critical value depends on temperature and increases
monotonically betweenminimumof scrit(0)=2 andmaximum  ¥ =( )s T 3crit [33].

3.Non-Markovianity indicators

In this sectionwe give a brief review of the non-Markovianity indicators thatwewill use in the paper and present
some properties whichwill be needed to derive themain results, presented in section 4.

3.1. Entropy production rate
In non-equilibrium thermodynamics the entropy production is defined as

s =
¶
¶

+ ( )S

t
div , 25

where S stands for the entropyof the open systemand is a vectorfield describing theflowof entropyper unit area
per unit time. Inquantummechanics S is the vonNeumannentropy, defined as r r r= -( ( )) [ ( ) ( )]S t t ttr log .
Entropyproductionwas introduced in the frameworkof openquantumsystems in [34], where itwas shown that it
canbewritten as

s r r r= -b b
=

( ( )) ( ( )∣ ) ( )t
t

S t
d

d
, 26

t 0
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where r x r x r= - -( ( )∣ ( )) [ ( ) ( )] ( ( ))S t t t t S ttr log is the quantum relative entropy, ρ(t) is the system state at
time t and ρβ is the thermal equilibrium state at temperatureβ−1. It was also shown that this could be generalized
to any dynamicalmapΦtwith a stationary state ρ0, such thatΦt(ρ0)=ρ0,∀t. In [35], the relative entropywas
proven to be contractive for all positivemaps, that is r r r rF F( ∣ ) ( ( )∣ ( ))S S1 2 1 2 , for all positivemapsΦ. The
contractivity of quantum relative entropy is one of themost fundamental inequalities in quantum information
theory, and can be interpreted as a decrease in distinguishability between two states [13]. Later, the contractivity
was used as a basis for non-Markovianitymeasures [36, 37]. For any stationary state ρ0, the quantum entropy
production at time t is

s r r r
r

= +( ( )) [ ( ) ] ( ( )) ( )t
t

t
S t

t

d

d
tr log

d

d
, 270

with s <( )t 0 indicating non-Markovian dynamics.
In order to understand the physicalmeaning of this non-Markovianity indicator we stress again the fact that

the quantum relative entropy is ameasure of distinguishability between quantum states, even if it is neither
symmetric nor does it satisfy triangular inequality. Therefore it does not define a propermetric. Despite these
drawbacks it has been extensively used in quantum information theory being the direct generalization of the
classical relative entropy (which is also not symmetric and therefore not ametric)5.Moreover, quantum relative
entropy is useful since several other important quantities, e.g., quantummutual information and quantum
conditional entropy, are special cases of it and, as such, it can be used to quantify quantum information and
entanglement [38, 39].

The physical description ofmemory effects in terms of partial and temporary increase of quantum relative
entropy during the time evolution stems from the quantification of information backflow as partial increase of
state distinguishability. Specifically, entropy production is defined in terms of quantum relative entropy between
the system state at time t and the stationary state. Loss of information, ormore precisely information flow, is here
quantified as a decrease in the distance to the asymptotic state of the dynamics. Hencememory effects indicate a
partial increase in the distinguishability between the state of the system and its stationary state or, equivalently, as
a partial increase of information.

For the time evolution of a generic one qubit state

r
r r

r r
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the eigenvalues of ρ(t) areλ±(t)=(1±x(t))/2, with r r= + -( ) ∣ ( )∣ ( ( ) )x t t t4 2 101
2

11
2 . By the positivity

and r[ ]tr = 1 properties of quantum states, we get 0�x(t)�1 ∀ t.We notice that, for unital dynamics, the first
termof equation (27) becomes zero and the total entropy flow reduces to vonNeumann entropy. Thismeans
that vonNeumann entropy can be used as a non-Markovianity indicator for unitalmaps, as seen in [36]. The
time derivative of the vonNeumann entropy becomes

r r= - =
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On the other hand, since 0�x(t)�1 ∀ t, one sees that
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and thuswe conclude, that
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3.2. Purity rate
In [36] the rate of change of purity was considered as ameasure of non-Markovianity. Purity, defined as
 r r=( ( )) [ ( ) ]t tTr 2 , is generally used as a quantifier of quantumness of a state, and is directly related to other
useful quantities such as concurrence [40]. If the Lindblad operatorsAi in equation (1) areHermitian then the
purity rate can bewritten as [36]

5
Relative entropy can be given an information theoretic interpretation in the classical case. In source coding, relative entropy can be used to

describe inefficiency in codingwith randomvariables with an incorrect information about the original probability density. If a variableX1 is
picked using a probability density ( )p xX1

and is used to encode amessage assuming an incorrect density ( )p xX2
, the amount of bits required

is given by +( ) ( ∣∣ )H X H p pX X1 1 2
, whereH(X1) is the classical Shannon entropy, instead ofH(X1)needed if the information about the

distributionwas correct. Thus the decrease of relative entropy in this case leads to a decrease in the uncertainty of the coding and increase in
information about the process.
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 år g= -˙ ( ( )) ( ) ( ) ( )t t Q t , 32
i

i i

where r=( ) ∣∣[ ( )]∣∣Q t A t,i i HS
2 andHS stands for theHilbert–Schmidt norm, defined for an operatorA as

=∣∣ ∣∣ [ ]†A A AtrHS . AsQi (t)�0,∀t�0, the positivity of  r˙ ( ( ))t guarantees negativity of at least one γi(t ).
Generally, the positivity of purity rate cannot be used as non-Markovianity indicator for non-unital channels,
since the purity reaches itsminimumwhen the system is in themaximallymixed state.

For generic qubit dynamics, the purity change rate can bewritten as

 r r r= - +{ }˙ ( ) ˙ ( )[ ( ) ] ∣ ( )∣ ( )t t t
t

t2 2 1
d

d
. 3311 11 01

2

By looking at equation (31), we notice that  >  <˙ ( )t S t0 d d 0. In fact, all unital channels have the
maximallymixed state as a stationary state, sowe see that purity rate indicator is just amore restrictive case of
entropy production indicator, since it can be properly used as non-Markovianity witness only for unitalmaps.
Therefore, for this class of dynamicalmaps,memory effects can also be interpreted as a partial return of
quantumness as indicated by purity of the open quantum system state.

3.3. Trace distance
A commonly used distancemeasure for quantum states, namely trace distance, is defined for two states, ρ1 and
ρ2, as

r r r r= -( ) ∣ ∣ ( )D ,
1

2
tr , 341 2 1 2

where ∣·∣ indicates absolute value, defined as =∣ ∣ †A A A , for some operatorA.D(ρ1, ρ2) is contractive under
positive and trace preservingmaps, and thus an increase ofD(ρ1, ρ2) implies violation of P-divisibility (and,
hence, CP-divisibility).Moreover, trace distance has an important role in quantum information: if Alice
prepares a system in either state ρ1 or ρ2 with equal probability and sends it to Bobwhohas to discriminate
between the two, themaximumprobability of correctly identifying the received statewith a singlemeasurement
is (1+D(ρ1, ρ2))/2 [41]. Since state distinguishability can be interpreted as ameasure of the amount of
informationwe have on a quantum system, this property, togetherwith contractivity, was used to define the
increase of trace distance as a signature of non-Markovianity (BLPmeasure) and to physically identify the
correspondingmemory effects as information backflow [42].We note that this physical interpretation is similar
to the one presented in section 3.1 for the entropy production rate, since both these quantities are based on the
description of information flow in terms of dynamical change of state distinguishability (quantified by either
trace distance or quantum relative entropy).

The dynamics of a qubit state can bewritten as the equation ofmotion for the corresponding Bloch vector r
(t), as = +˙( ) ( ) ( ) ( )t t t tr r v , where ( )t is called the dampingmatrix of themap, and ( )tv the drift vector. In
our case =( )tv 0. It was shown in [43], that the trace distance between two states can increase iff

 l + >[ ( ) ( )] ( )t t 0, 35T
max

whereλmax[A]means themaximumeigenvalue of some operatorA and ( )t T is the transpose of( )t .

3.4. Bloch volumemeasure
Using the Bloch vector representation of qubit states, one can also investigate the dynamics of an open quantum
systemby looking at the volume of physical states that are dynamically accessible to the system.We refer to this
quantity as the Bloch volume. The Bloch volume is contractive under positive and trace preservingmaps and
therefore can be used as a geometric indicator of non-Markovianity [44].More precisely, an increase in the
Bloch volume signals violation of P-divisibility. In [43], it was shown, that the time evolution of the Bloch
volume depends directly on the trace of the dampingmatrix ( )t . The Bloch volume increases iff

 >[ ( )] ( )ttr 0, 36

and thus, if there exist an interval of time such that equation (36) is satisfied, the dynamics is non-Markovian
w.r.t.the Bloch volumemeasure. By comparing this result with the condition of equation (35), we see that the
increase in trace distance is always a stronger indicator for non-Markovianity than the increase of Bloch
volume [43].

The change inBloch volume is directly linked to theBLPmeasure. In the case of a qubit, the optimal pair of
states used in the definition of the BLPmeasure resides at the boundary of the state space [46]. Trace distance in this
case is just theEuclidean distance between the two states. This leads to an increase (decrease) in trace distance
between these two stateswhen theBloch volume increases (decreases). Despite the similarities, however, this
connection cannot beused to interpret the change inBloch volumeas change indistinguishability, as discussed in
[44]. TheBloch volume indicator, however, can be interpreted as ameasure of the change of classical information
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encoded in thequantum state. Given a quantum statewithprobability distribution ( )p rt , where rt is theBloch
vector characterizing the state at time t, the change in Shannon entropyh canbewritten as

- =( ( )) ( ( )) ∣∣ ∣∣h p h pr r Alogt t0 2 , where ∣∣ ∣∣At is thenormof theBloch vector dynamicalmapdefined as
= +Ar r qt t t0 . The latter quantity is directly linked to the change inBloch volume. Thus the decrease inBloch

volume implies a decrease in the amount information as detailed in [44]. According to this interpretation,memory
effects are temporary revival of classical information encoded in thequantum state, as it evolves due to the
interactionwith the environment.

3.5. Non-Markovianity and singular values of the dynamicalmap
Using Bloch volume as an indicator of non-Markovianity was further developed in [21]. The connection
between P-divisibility and the changes of Bloch volumewas studied using the singular value decomposition. The
matrix representation of amap can bewritten in its singular value decomposition, which consists of two rotation
matrices and a single scalingmatrix. The scalingmatrix is a diagonalmatrix consisting of the singular values of
themap. Because rotations do not change the Bloch volume, the only relevant part of themap is the scaling
matrix. The time evolution of singular values and eigenvalues directly determine if themap is P-divisible or not
in the unital and commutative cases respectively.

For unitalmaps, with singular values sk(t), P-divisibility is violated iff

>( ) ( )
t

s t
d

d
0, 37k

for at least one k, which implies non-Markovianity. For commutativemaps, the P-divisibility is determined by
the eigenvalues of themap. Letλk(t) be the eigenvalues of the dynamicalmapΦt, meaningΦt(Xk)=λk(t)Xk

w.r.t.the operator eigenbasis {Xk} of the dynamicalmap. In this case, P-divisibility is violated iff

l >∣ ( )∣ ( )
t

t
d

d
0, 38k

which implies non-Markovianity.
We note that, in general, the change in the singular values of the dynamicalmap does not have a simple

physicalmeaningwhichwould allow us to interpretmemory effects associated to their partial increase during
the time evolution.However, they are strongerwitnesses of non-Markovianity when compared to the Bloch
volumemeasure and, for this reason, we have considered them in this study.

3.6. l1-normmeasure of coherences
By definition, all coherencemeasures are non-increasing under incoherent CPTP (ICPTP)maps, i.e. CPTP
maps that preserve diagonal states as diagonal [45]. The revival of coherences can be used as an indicator of non-
Markovian dynamics [37]. Coherences are also linked to the amount of quantum information in a system and
thus a positive rate of change in coherences can be linked to information backflow.

A simplemeasure of coherences, namely the l1-norm, is defined as

år r=
¹

( ( )) ∣ ( )∣ ( )C t t , 39l
i j

ij1

where ρij(t) indicates the (i, j)-element of the densitymatrix ρ(t) [45]. As ameasure of coherences, Cl1 is non-
increasing under ICPTPmaps. Using this property, non-Markovianity w.r.t.Cl1 can be detected iff [37]

r >( ( )) ( )
t

C t
d

d
0. 40l1

For one qubit systems, this condition is equivalent to

r >∣ ( )∣ ( )
t

t
d

d
0. 4101

3.7. Relative entropy of coherences
Another coherencemeasure, namely the relative entropy of coherences (REC), is defined as the smallest
quantum relative entropy between the state ρ(t)=Φt(ρ(0)) and an incoherent state ξ(t)=Φt(ξ(0))


r r x r r= = -

x Î
( ( )) ( ( )∣ ( )) ( ( )) ( ( )) ( )

( )
C t S t t S t S tmin , 42

t
r diag

where ρ(t) is the system state, and ρdiag(t) is the systemdensitymatrix ρ(t), where off-diagonal elements are
replacedwith zeroes [45]. Like entropy production, REC is also defined using the relative entropy, whichwas
shown to be contractive under (incoherent) positivemaps [35], and thus revival of coherences implies
violation of P-divisibility. In [37], this property was used to define non-Markovianity as increase in coherences,
indicated by
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r >( ( )) ( )
t

C t
d

d
0. 43r

Wenote here, that for one qubit systems, choosing the initial state, so that the diagonal elements are invariant in
the dynamics, simplifies the equation (43) to (41).

4. Results

In the previous section, we focused on general single qubit systems. In this section, we concentrate on the general
phase-covariant single qubit dynamics rising frommaster equations of the form (3) and its commutative and
unital special cases.

4.1. Entropy production rate
To calculate the entropyflow,wefind a stationary state for the system. For any stationary state, P1(0)=P1(t)
∀t�0.Using equation (8), this is equivalent to

= --G -G( ) ( )( ) ( )( ) ( )G t Pe 0 1 e . 44t t
1

We see that this holds iff the dynamics is commutative. Thus the commutative case is themost general subclass
ofmaster equation (3), for which the entropy production is a valid indicator of non-Markovianity. For eachκ,
the corresponding stationary state is

r k
k

k

= +

+

k

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
( )

1

1
0

0
1

, 45

and the entropy production becomes

s k
r

= +( ) ˙ ( ) ( ) ( ( )) ( )t P t
S t

t
log

d

d
. 461

Themagnitude ofκ dictates howmuch entropy production deviates from the vonNeumann entropy. For any
initial state with the same diagonal elements as the stationary state r =k

˙ ( )P t, 01 , and the entropy production
reduces to vonNeumann entropy. Additionally, whenκ=1, the dynamics is unital and the first term
disappears, and the entropy production reduces to vonNeumann entropy, for any state ρ(t). Next wefind the
optimal states for detecting non-Markovianity w.r.t.entropy production.

We can emphasize the off-diagonal dynamics by choosing the same diagonal elements as in the stationary
state, and non-zero off-diagonal elementsα(0), for the initial state.With this choice, =˙ ( )P t 01 , and thus the
first term in equation (46) is zero. From equation (31), we see that now the entropy production is negative, iff

a k g g>  + + <∣ ( )∣ ( ) ( ) ( ) ( )
t

t t t
d

d
0 1 4 0. 472

3

On the other hand, we can emphasize the role of diagonal elements by choosing a diagonal state, so that
P1(0)=1/(1+κ) andα(0)=0.With this initial state, the entropy production becomes

s
k

g k
k

k k
=

- - -
+ -

-G
-G

-G
k

k

k

⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( )

( )
( )( )

( )

( )t t
1

2
e log

1 1 e

1 e
. 48t

t

t

Since, 0�κ�1, we see that thefirst factor and the logarithmic function is always negative, and thus the
dynamics is non-Markovianw.r.t.entropy production indicator, when g s<  <( ) ( )t t0 0. In summary,
the conditions for detecting non-Markovianity w.r.t.entropy production are given by

k g g+ + <( ) ( ) ( ) ( )t t1 4 0, 493

g <( ) ( )t 0. 50

Wenote, that these results apply only to the commutative case ofmaster equation (3), since stationary states do
not exist for the non-commutative cases.

4.2. Purity rate
From the general formof amaster equation in the Lindblad form,we notice thatHermicity of the Lindblad
operators implies unital dynamics. By looking at equation (16), we see that the Lindblad operators are always
Hermitian in the unital case of themaster equation (3). Sowe see, that for the unital case in equation (16), we can
use the positivity of ( )t td d as indicator of non-Markovianity.
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For an arbitrary initial qubit state, the purity rate becomes

 g
g

g a= - - + +-G -G - G⎜ ⎟⎜ ⎟
⎧⎨⎩

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎫⎬⎭
˙ ( ) ( ) ( ) ( ) ( ) ∣ ( )∣ ( )( ) ( ) ˜ ( )t t P

t
t4e e 0

1

2 2
0 e . 51t t t

1

2

3
2 21 1

Here the decay rates γ(t) and γ3(t)might take negative values, but all the other functions appearing in the rhsof
equation (51) are always non-negative. Next wefind the optimal states for detecting non-Markovianity w.r.t.
purity rate.

As in the case of entropy production,we can appropriately choose an initial state, in order to emphasize either
off-diagonal dynamics, or diagonal dynamics. By choosing r = +ñá+( ) ∣ ∣0 ,where +ñ = ñ + ñ∣ (∣ ∣ )1 2 0 1 , the
first part vanishes and  >( )t td d 0 iff

g g+ <( ) ( ) ( )t t2 0. 523

On the other hand by choosing any diagonal initial state,  >( )t td d 0 iff

g <( ) ( )t 0. 53

The conditions (52) and (53) define the boundaries for detecting non-Markovianity with purity rate. As
expected, these are the same conditions as in the case of entropy production, as these indicators coincide for
unital dynamics.

4.3. Trace distance
For the general formofmaster equation (3), the dampingmatrix ( )t takes the form



g w

w g=

- - - -

- - -

- -

g g

g g

g g

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
( )

( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

t

t t

t t

0

0

0 0

, 54

t t

t t

t t

4 4 3

4 4 3

2 2

1 2

1 2

1 2

and thus

  g g g
g g g g g

+ = - + +
- + + - +

( ) ( ) [ ( ( ) ( ) ( ))
( ( ) ( ) ( )) ( ( ) ( ))] ( )

t t t t t

t t t t t

diag 4 2,

4 2, . 55

T
1 2 3

1 2 3 1 2

Now the condition of equation (35) becomes

g g g+ + <( ) ( ) ( ) ( )t t t4 0, 561 2 3

g g+ <( ) ( ) ( )t t 0. 571 2

If either of these holds, then the dynamics is detected as non-Markovian by a trace distance based indicator.We
note, that the first condition involves all the decay rates. Thismeans that the dynamics is not detected as non-
Markovianw.r.t.thefirst condition in cases where one or two of the decay rates are negative and others positive
and large enough to compensate the negativity. On the other hand, the second condition depends on relative
magnitudes of the dissipation and absorption rate but does not depend on the pure dephasing rate. Thismeans
that the dynamics is not detected as non-Markovianw.r.t.the second condition if one of the decay rates is
positive and large enough to compensate the possible negativity of the other. In the commutative and unital
cases, thefirst condition depends only on the balance of γ(t) and γ3(t), while the second condition depends only
on the sign of γ(t).

4.4. Bloch volumemeasure
For the generalmaster equation (3), the Bloch volumemeasure detects dynamics as non-Markovian, iff

 g g g>  + + <[ ( )] ( ) ( ) ( ) ( )t t t ttr 0 2 0. 581 2 3

As expected, this condition is always weaker than the two given by trace distance. If γ1(t)+γ2(t)<0, then trace
distance immediately detects the non-Markovianity, because of equation (57), but depending on γ3(t), the Bloch
volume indicatormight not detect it. On the other hand, if the non-Markovianity rises from the negativity of
γ3(t), then equation (56) detects it sooner than the condition in equation (58), since the contribution of γ3(t) is
greater in trace distance.

4.5. Non-Markovianity and singular values of the dynamicalmap
Formaster equation (3), the unitalmaster equations are a subset of the commutative case, so it is sufficient to
study only the eigenvalues of themap. In this case, increase in absolute values of the eigenvalues of the dynamical
map indicates non-P-divisibility, and thus non-Markovianity. The eigenvalues of the dynamicalmapΦt are
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*l l l l= = = =W -G -G -Gk k( ) ( ) ( ) ( ) ( )( ) ( ) ˜ ( ) ( )t t t te , e , 1. 59t t t t
1 2

i 2
3 4

Asλ4 is constant, it does not give any relevant conditions. The dynamicalmap is non-P-divisible iff

l l k g g= >  + + <∣ ( )∣ ∣ ( )∣ ( ) ( ) ( ) ( )
t

t
t

t t t
d

d

d

d
0 1 4 0, 601 2 3

l g>  <∣ ( )∣ ( ) ( )
t

t t
d

d
0 0. 613

Weconclude, that non-Markovianity w.r.t.violation of P-divisibility is detected if either of these conditions
holds.We notice that these are exactly the same conditions as in the commutative case of the trace distance
indicator, namely (56) and (57).

4.6. l1-normmeasure of coherences
To study the coherencemeasures, we use the computational basis ñ ñ{∣ ∣ }0 , 1 for qubit dynamics. In this basis, the
solution (7), for the generalmaster equationmaps diagonal states to diagonal states and thus the coherence
measures can be used. In the general case, the derivative of l1-normmeasure becomes

r g g g a= - + + -G -G( ( )) ( ( ) ( ) ( ))∣ ( )∣ ( )( ) ˜ ( )
t

C t t t t
d

d
2 2 2 0 e . 62l

t t
1 2 3

2
1

The dynamics is non-Markovianw.r.t. the l1-normof coherences, iff

r g g g>  + + <( ( )) ( ) ( ) ( ) ( )
t

C t t t t
d

d
0 4 0. 63l 1 2 31

This coincides with thefirst non-Markovianity condition (56) of trace distancemeasure, but does not say
anything about the relation of γ1(t) and γ2(t)without γ3(t). However, this is not the same condition as for the
Bloch volumemeasure, since theweight factor of γ3(t) is different. The l1-normmeasure ismore reactive to the
negativity of γ3(t), but the Bloch volumemeasure ismore effective when detecting the negativity of γ1(t)+γ2(t).

4.7. Relative entropy of coherences
Finally we study the RECmeasure. The time derivative of REC for a general qubit state is

r =
-

-
-
+

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥( ( )) ˙ ( ) ( )

( )
( ) ( )

( )
( )

t
C t P t

P t

P t

x t

t

x t

x t

d

d
log

1 1

2

d

d
log

1

1
. 64r 1

1

1

We see, that in general, the positivity of this depends on the initial state and all of the decay rates, whichmakes it
impossible to deduce any non-Markovianity conditionswithout simplifying the system.

In the commutative case, the stationary state can be used to simplify REC. By choosing the initial state ρ(0),
so that the diagonal elements are the same as the stationary state, we have =˙ ( )P t 01 ∀t�0. Thuswe are left only
with the off-diagonal evolution, which leads to the same positivity condition as in equation (63) for dCr(ρ(t))/dt.
Thuswe conclude, that for the commutative case, these two indicators are equivalent.

In the general case, we can do numerical analysis to compare RECwith the l1-normmeasure. According to
numerical calculations, using as an example system g g= + =( ) ( ( ) ) ( )t b t t asin 1 ,1 2 and g t=( ) ( )t tsin3
(non-unital, non-commutative), withmultiple values of a, b, and τ, REC is never stronger indicator for non-
Markovianity than Cl1. Also, according to numerical analysis, the optimizing state for the REC is +ñá+∣ ∣, which
is to be expected, as this state has themaximal off-diagonal elements, in the ñ ñ{∣ ∣ }0 , 1 basis, andREC is a
measure of coherences.We also found that in this case, the introduction of an ancilla system, as suggested in
[37], does notmake the indicator anymore sensitive to non-Markovianity, but only increases the amplitude of
the time derivative of the REC.However, both REC and Cl1 areweaker indicators than trace distance in general,
as trace distance produces an additional condition from equation (57).

5. Conclusions and discussions

In table 1, we summarize the conditions for non-Markovian dynamics corresponding to each indicator, for each
case of themaster equation. These conditions enable us to deduce the non-Markovianity of themaster equation
directly from its decay rates. This is useful whenwewant to design amaster equation that exhibits non-
Markovianity w.r.t. specificmeasure of non-Markovianity, or we are given amaster equation andwe need to
check if it producesMarkovian or non-Markovian dynamics w.r.t.different indicators. Also,measuring
different indicators gives us now relevant information about the decay rates: for example,measuringMarkovian
dynamics w.r.t.Bloch volumemeasure and non-Markovian dynamics w.r.t.trace distance at time t, we know
immediately that g g g- + >( ) ( ( ) ( ))t t t 2 03 1 2 at that time. Similar reasoning can be used to approximate
the unknown value ofκ in the commutative case.

10

New J. Phys. 20 (2018) 073012 J Teittinen et al



Only trace distance, Bloch volume and Cl1 indicators can be used at the general level, the other indicators
need restrictions on themaster equation. The RECbased indicator alsoworks on a general level, but can only be
evaluated numerically and thus does not produce clear analytical conditions for the decay rates.

Ifwe focus on theunital case,where all indicators are valid,we see that entropyproduction, purity rate, trace
distance, and the eigenvalues and singular values of thedynamicalmapproduce exactly the sameconditions and at this
level canbe regardedas the strongest indicators.Theoverall condition fornon-Markovianityw.r.t.the indicatorwith
twoconditions canbewritten as g g g g g+ + + <{ ( ) ( ) ( ) ( ) ( )}t t t t tmin 4 , 01 2 3 1 2 . BlochvolumeandCl1 (and
REC) are clearlyweaker thanother indicators, but arenot equal toone another, or even comparable: Blochvolume is
the strongerof thesewhen thenegativity of thedecay rates comes fromγ(t) andCl1 is strongerwhen g ( )t3 is negative.

Regarding the Bloch vector evolution, from table 1, we see that all the indicators with two conditions can
identify non-Markovian dynamics from any direction of Bloch vector dynamics. For example, the singular value
indicator detects all directions in the Bloch dynamics, while the Bloch volumemeasure only detects non-
Markovianity by looking at the volume, that is all directions simultaneously. Coherencemeasures intuitively
indicate only the non-Markovianity arising fromoff-diagonal dynamics.

Infigure 1, the conditions for the commutative case are illustrated as a region plot in g g¢{ },3 -space, where
g g g¢ º +( ) ( ) ( )t t t1 2 . From the regions, we see that all indicators detect non-Markovianity when all decay rates
are negative. The transition betweenMarkovian and non-Markovian dynamics happens when the decay rates
take negative and positive values at different times.Most of the indicators detect the negativity of γ(t), regardless
of γ3(t), right away, but the detection of negativity of γ3(t) always depends on the value of γ(t). The curves in
figure 1 are the dynamics given by the systemdescribed in section 2.2.On the left-hand side are the region plots,
with the (black) dynamical curve given by equations (21)–(23). On the right-hand sidewe have the time
evolution of g¢( )t (solid black) and γ3(t) (dashed black) and the vertical lines indicatingwhen the crossing
between the regions happen in the left picture.

We also see, that in the lower right region, there exists an area inwhich none of the indicators detects non-
Markovianity. In fact, for any bounded γ3(t), we can choose γ1(t) and γ2(t), s.t. g g g+ +( ) ( ) ( )t t t4 0,1 2 3

" t and γ1(t)+γ2(t)>0. Thismeans, that violation of CP-divisibility caused by γ3(t) of anymagnitude can be
hidden from the indicators studied here by positivity of γ1(t)+γ2(t). A special case of these choices is the Eternal
non-Markovianity dynamics, introduced in [43], which is a special case ofmaster equation (3), with the choices
γ1(t)=γ2(t)=2 and g = -( ) ( )t ttanh3 . Similarly, the negativity of γ1(t) (γ2(t)) can be overshadowed by the
positivity of γ3(t) and γ2(t) (γ1(t)). Hence the violation of CP-divisibility, rising fromnegativity of onefixed decay
rate, cannot be detected by these indicators if the other rates are chosen accordingly.

In conclusion, in this paperwe have thoroughly investigated how to identify non-Markovian dynamics, as
signalled by different indicators, by looking at the behaviour of the decay rates of themaster equations. Our
results apply to awide class of time-local single qubitmaster equations and, as such, are of clear interest for
fundamental studies of open quantum systems theory, especially in the context of quantum reservoir
engineering.

Table 1.Conditions for detecting non-Markovianity with different indicators and different classes ofmaster equations.
The commutative and unital results for entropy production, as well as purity, require specific choices of initial states. The
upper condition involving γ3(t), was obtainedwith the initial state defined byP1(0)=κ/(κ+1) and a ¹( )0 0, while
the lower result uses initial state defined by P1(0)=1/(κ+1) andα(0)=0.

Indicator General Commutative, Unital,
g g g kg= =( ) ( ) ( ) ( )t t t t,1 2 g g g= =( ) ( ) ( )t t t1 2

Entropyproduction — k g g+ + <( ) ( ) ( )t t1 4 03 g g+ <( ) ( )t t2 03

— g <( )t 0 g <( )t 0

Purity — — g g+ <( ) ( )t t2 03

— — g <( )t 0

Tracedistance g g g+ + <( ) ( ) ( )t t t4 01 2 3 k g g+ + <( ) ( ) ( )t t1 4 03 g g+ <( ) ( )t t2 03

g g+ <( ) ( )t t 01 2 g <( )t 0 g <( )t 0

Blochvolume g g g+ + <( ) ( ) ( )t t t2 01 2 3 k g g+ + <( ) ( ) ( )t t1 2 03 g g+ <( ) ( )t t 03

Eigenvalues — k g g+ + <( ) ( ) ( )t t1 4 03 g g+ <( ) ( )t t2 03

— g <( )t 0 g <( )t 0

Singularvalues — — g g+ <( ) ( )t t2 03

— — g <( )t 0

Cl1 g g g+ + <( ) ( ) ( )t t t4 01 2 3 k g g+ + <( ) ( ) ( )t t1 4 03 g g+ <( ) ( )t t2 03
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Figure 1.On the left-hand side are pictured the regions for each condition from table 1 of the commutative case. The black curve
indicates the evolution of the decay rates of the systemdescribed in section 2.2 in the g g ¢{ },3 -space, wherewe have defined
g g g¢ º +( ) ( ) ( )t t t1 2 . Herewe have chosenωc=1,ω0=1 and ν=1.Green region indicates g ¢ <( )t 0, blue region g ¢ +( )t
g <( )t4 03 and the orange region indicates g g¢ + <( ) ( )t t2 03 . On the right-hand sidewe have the dynamical plots for γ3(t) (dashed
black) and g ¢( )t (solid black). Vertical lines indicate when the total dynamics crosses border of corresponding colour in the left-hand
side plots. The crossing to the green region is trivially indicated by the g ¢( )t -curve having negative values. (a)Dynamics of the system
in section 2.2, withR= 0.4, s= 4.5, kT= 3.0. (b)Dynamics of the system in section 2.2, withR= 4.0, s= 1.0, kT= 3.0.
(c)Dynamics of the system in section 2.2, withR= 4.0, s= 3.5, kT= 3.0.
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