275 research outputs found
Domain enhanced interlayer coupling in ferroelectric/paraelectric superlattices
We investigate the ferroelectric phase transition and domain formation in a
periodic superlattice consisting of alternate ferroelectric (FE) and
paraelectric (PE) layers of nanometric thickness. We find that the polarization
domains formed in the different FE layers can interact with each other via the
PE layers. By coupling the electrostatic equations with those obtained by
minimizing the Ginzburg-Landau functional we calculate the critical temperature
of transition Tc as a function of the FE/PE superlattice wavelength and
quantitatively explain the recent experimental observation of a thickness
dependence of the ferroelectric transition temperature in KTaO3/KNbO3
strained-layer superlattices.Comment: Latest version as was published in PR
Boosting the Figure Of Merit of LSPR-based refractive index sensing by phase-sensitive measurements
Localized surface plasmon resonances possess very interesting properties for
a wide variety of sensing applications. In many of the existing applications
only the intensity of the reflected or transmitted signals is taken into
account, while the phase information is ignored. At the center frequency of a
(localized) surface plasmon resonance, the electron cloud makes the transition
between in- and out-of-phase oscillation with respect to the incident wave.
Here we show that this information can experimentally be extracted by
performing phase-sensitive measurements, which result in linewidths that are
almost one order of magnitude smaller than those for intensity based
measurements. As this phase transition is an intrinsic property of a plasmon
resonance, this opens up many possibilities for boosting the figure of merit
(FOM) of refractive index sensing by taking into account the phase of the
plasmon resonance. We experimentally investigated this for two model systems:
randomly distributed gold nanodisks and gold nanorings on top of a continuous
gold layer and a dielectric spacer and observed FOM values up to 8.3 and 16.5
for the respective nanoparticles
Synthesis of Glass Nanofibers Using Femtosecond Laser Radiation Under Ambient Condition
We report the unique growth of nanofibers in silica and borosilicate glass using femtosecond laser radiation at 8 MHz repetition rate and a pulse width of 214 fs in air at atmospheric pressure. The nanofibers are grown perpendicular to the substrate surface from the molten material in laser-drilled microvias where they intertwine and bundle up above the surface. The fibers are few tens of nanometers in thickness and up to several millimeters in length. Further, it is found that at some places nanoparticles are attached to the fiber surface along its length. Nanofiber growth is explained by the process of nanojets formed in the molten liquid due to pressure gradient induced from the laser pulses and subsequently drawn into fibers by the intense plasma pressure. The attachment of nanoparticles is due to the condensation of vapor in the plasma
Plasmonically Enhanced Reflectance of Heat Radiation from Low-Bandgap Semiconductor Microinclusions
Increased reflectance from the inclusion of highly scattering particles at
low volume fractions in an insulating dielectric offers a promising way to
reduce radiative thermal losses at high temperatures. Here, we investigate
plasmonic resonance driven enhanced scattering from microinclusions of
low-bandgap semiconductors (InP, Si, Ge, PbS, InAs and Te) in an insulating
composite to tailor its infrared reflectance for minimizing thermal losses from
radiative transfer. To this end, we compute the spectral properties of the
microcomposites using Monte Carlo modeling and compare them with results from
Fresnel equations. The role of particle size-dependent Mie scattering and
absorption efficiencies, and, scattering anisotropy are studied to identify the
optimal microinclusion size and material parameters for maximizing the
reflectance of the thermal radiation. For composites with Si and Ge
microinclusions we obtain reflectance efficiencies of 57 - 65% for the incident
blackbody radiation from sources at temperatures in the range 400 - 1600
{\deg}C. Furthermore, we observe a broadbanding of the reflectance spectra from
the plasmonic resonances due to charge carriers generated from defect states
within the semiconductor bandgap. Our results thus open up the possibility of
developing efficient high-temperature thermal insulators through use of the
low-bandgap semiconductor microinclusions in insulating dielectrics.Comment: Main article (8 Figures and 2 Tables) + Supporting Information (8
Figures
Identification of the Orbital Pairing Symmetry in UPt_3
This paper summarizes the results of a comprehensive analysis of the
thermodynamic and transport data for the superconducting phases of UPt_3.
Calculations of the transverse sound attenuation as a function of temperature,
frequency, polarization, and disorder are presented for the leading models of
the superconducting order parameter. Measurements of the specific heat, thermal
conductivity, and transverse sound attenuation place strong constraints on the
orbital symmetry of the superconducting order parameter. We show that the
superconducting A and B phases are in excellent agreement with pairing states
belonging to the odd-parity E_{2u} orbital representation.Comment: 11 pages with 7 figure
Fano resonances in plasmonic core-shell particles and the Purcell effect
Despite a long history, light scattering by particles with size comparable
with the light wavelength still unveils surprising optical phenomena, and many
of them are related to the Fano effect. Originally described in the context of
atomic physics, the Fano resonance in light scattering arises from the
interference between a narrow subradiant mode and a spectrally broad radiation
line. Here, we present an overview of Fano resonances in coated spherical
scatterers within the framework of the Lorenz-Mie theory. We briefly introduce
the concept of conventional and unconventional Fano resonances in light
scattering. These resonances are associated with the interference between
electromagnetic modes excited in the particle with different or the same
multipole moment, respectively. In addition, we investigate the modification of
the spontaneous-emission rate of an optical emitter at the presence of a
plasmonic nanoshell. This modification of decay rate due to electromagnetic
environment is referred to as the Purcell effect. We analytically show that the
Purcell factor related to a dipole emitter oriented orthogonal or tangential to
the spherical surface can exhibit Fano or Lorentzian line shapes in the near
field, respectively.Comment: 28 pages, 10 figures; invited book chapter to appear in "Fano
Resonances in Optics and Microwaves: Physics and Application", Springer
Series in Optical Sciences (2018), edited by E. O. Kamenetskii, A. Sadreev,
and A. Miroshnichenk
Magnetic skyrmions and their lattices in triplet superconductors
Complete topological classification of solutions in SO(3) symmetric
Ginzburg-Landau free energy has been performed and a new class of solutions in
weak external magnetic field carrying two units of magnetic flux has been
identified. These solutions, magnetic skyrmions, do not have singular core like
Abrikosov vortices and at low magnetic field become lighter for strongly type
II superconductors. As a consequence, the lower critical magnetic field Hc1 is
reduced by a factor of log(kappa). Magnetic skyrmions repel each other as 1/r
at distances much larger then magnetic penetration depth forming relatively
robust triangular lattice. Magnetic induction near Hc1 increases gradually as
(H-Hc1)^2. This agrees very well with experiments on heavy fermion
superconductor UPt3. Newly discovered Ru based compounds Sr2RuO4 and
Sr2YRu(1-x)Cu(x)O6 are other possible candidates to possess skyrmion lattices.
Deviations from exact SO(3) symmetry are also studied.Comment: 23 pages, 10 eps figure
Two-dimensional Transport Induced Linear Magneto-Resistance in Topological Insulator BiSe Nanoribbons
We report the study of a novel linear magneto-resistance (MR) under
perpendicular magnetic fields in Bi2Se3 nanoribbons. Through angular dependence
magneto-transport experiments, we show that this linear MR is purely due to
two-dimensional (2D) transport, in agreement with the recently discovered
linear MR from 2D topological surface state in bulk Bi2Te3, and the linear MR
of other gapless semiconductors and graphene. We further show that the linear
MR of Bi2Se3 nanoribbons persists to room temperature, underscoring the
potential of exploiting topological insulator nanomaterials for room
temperature magneto-electronic applications.Comment: ACS Nano, in pres
Bulk and Boundary Critical Behavior at Lifshitz Points
Lifshitz points are multicritical points at which a disordered phase, a
homogeneous ordered phase, and a modulated ordered phase meet. Their bulk
universality classes are described by natural generalizations of the standard
model. Analyzing these models systematically via modern
field-theoretic renormalization group methods has been a long-standing
challenge ever since their introduction in the middle of the 1970s. We survey
the recent progress made in this direction, discussing results obtained via
dimensionality expansions, how they compare with Monte Carlo results, and open
problems. These advances opened the way towards systematic studies of boundary
critical behavior at -axial Lifshitz points. The possible boundary critical
behavior depends on whether the surface plane is perpendicular to one of the
modulation axes or parallel to all of them. We show that the semi-infinite
field theories representing the corresponding surface universality classes in
these two cases of perpendicular and parallel surface orientation differ
crucially in their Hamiltonian's boundary terms and the implied boundary
conditions, and explain recent results along with our current understanding of
this matter.Comment: Invited contribution to STATPHYS 22, to be published in the
Proceedings of the 22nd International Conference on Statistical Physics
(STATPHYS 22) of the International Union of Pure and Applied Physics (IUPAP),
4--9 July 2004, Bangalore, Indi
Fano resonances in nanoscale structures
Nowadays nanotechnology allows to scale-down various important devices
(sensors, chips, fibres, etc), and, thus, opens up new horizon for their
applications. Nevertheless, the efficiency most of them is still based on the
fundamental physical phenomena, such as resonances. Thus, the understanding of
the resonance phenomena will be beneficial. One of the well-known examples is
the resonant enhancement of the transmission known as Breit-Wigner resonances,
which can be described by a Lorentzian function. But, in many physical systems
the scattering of waves involves propagation along different paths, and, as a
consequence, results in interference phenomena, where constructive interference
corresponds to resonant enhancement and destructive interference to resonant
suppression of the transmission. Recently, a variety of experimental and
theoretical work has revealed such patterns in different branches of physics.
The purpose of this Review is to demonstrate that this kind of resonant
scattering is related to the Fano resonances, known from atomic physics. One of
the main features of the Fano resonances is the asymmetric profile. The
asymmetry comes from the close coexistence of resonant transmission and
resonant reflection. Fano successfully explained such a phenomenon in his
seminal paper in 1961 in terms of interaction of a discrete (localized) state
with a continuum of propagation modes. It allows to describe both resonant
enhancement and resonant suppression in a unified manner. All of these
properties can be demonstrated in the frame of a very simple model, which will
be used throughout the Review to show that resonant reflections observed in
different complex systems are indeed closely related to the Fano resonances.Comment: This review paper was submitted to Review of Modern Physics. But all
comments are still welcome
- …