275 research outputs found

    Domain enhanced interlayer coupling in ferroelectric/paraelectric superlattices

    Full text link
    We investigate the ferroelectric phase transition and domain formation in a periodic superlattice consisting of alternate ferroelectric (FE) and paraelectric (PE) layers of nanometric thickness. We find that the polarization domains formed in the different FE layers can interact with each other via the PE layers. By coupling the electrostatic equations with those obtained by minimizing the Ginzburg-Landau functional we calculate the critical temperature of transition Tc as a function of the FE/PE superlattice wavelength and quantitatively explain the recent experimental observation of a thickness dependence of the ferroelectric transition temperature in KTaO3/KNbO3 strained-layer superlattices.Comment: Latest version as was published in PR

    Boosting the Figure Of Merit of LSPR-based refractive index sensing by phase-sensitive measurements

    Full text link
    Localized surface plasmon resonances possess very interesting properties for a wide variety of sensing applications. In many of the existing applications only the intensity of the reflected or transmitted signals is taken into account, while the phase information is ignored. At the center frequency of a (localized) surface plasmon resonance, the electron cloud makes the transition between in- and out-of-phase oscillation with respect to the incident wave. Here we show that this information can experimentally be extracted by performing phase-sensitive measurements, which result in linewidths that are almost one order of magnitude smaller than those for intensity based measurements. As this phase transition is an intrinsic property of a plasmon resonance, this opens up many possibilities for boosting the figure of merit (FOM) of refractive index sensing by taking into account the phase of the plasmon resonance. We experimentally investigated this for two model systems: randomly distributed gold nanodisks and gold nanorings on top of a continuous gold layer and a dielectric spacer and observed FOM values up to 8.3 and 16.5 for the respective nanoparticles

    Synthesis of Glass Nanofibers Using Femtosecond Laser Radiation Under Ambient Condition

    Get PDF
    We report the unique growth of nanofibers in silica and borosilicate glass using femtosecond laser radiation at 8 MHz repetition rate and a pulse width of 214 fs in air at atmospheric pressure. The nanofibers are grown perpendicular to the substrate surface from the molten material in laser-drilled microvias where they intertwine and bundle up above the surface. The fibers are few tens of nanometers in thickness and up to several millimeters in length. Further, it is found that at some places nanoparticles are attached to the fiber surface along its length. Nanofiber growth is explained by the process of nanojets formed in the molten liquid due to pressure gradient induced from the laser pulses and subsequently drawn into fibers by the intense plasma pressure. The attachment of nanoparticles is due to the condensation of vapor in the plasma

    Plasmonically Enhanced Reflectance of Heat Radiation from Low-Bandgap Semiconductor Microinclusions

    Get PDF
    Increased reflectance from the inclusion of highly scattering particles at low volume fractions in an insulating dielectric offers a promising way to reduce radiative thermal losses at high temperatures. Here, we investigate plasmonic resonance driven enhanced scattering from microinclusions of low-bandgap semiconductors (InP, Si, Ge, PbS, InAs and Te) in an insulating composite to tailor its infrared reflectance for minimizing thermal losses from radiative transfer. To this end, we compute the spectral properties of the microcomposites using Monte Carlo modeling and compare them with results from Fresnel equations. The role of particle size-dependent Mie scattering and absorption efficiencies, and, scattering anisotropy are studied to identify the optimal microinclusion size and material parameters for maximizing the reflectance of the thermal radiation. For composites with Si and Ge microinclusions we obtain reflectance efficiencies of 57 - 65% for the incident blackbody radiation from sources at temperatures in the range 400 - 1600 {\deg}C. Furthermore, we observe a broadbanding of the reflectance spectra from the plasmonic resonances due to charge carriers generated from defect states within the semiconductor bandgap. Our results thus open up the possibility of developing efficient high-temperature thermal insulators through use of the low-bandgap semiconductor microinclusions in insulating dielectrics.Comment: Main article (8 Figures and 2 Tables) + Supporting Information (8 Figures

    Identification of the Orbital Pairing Symmetry in UPt_3

    Full text link
    This paper summarizes the results of a comprehensive analysis of the thermodynamic and transport data for the superconducting phases of UPt_3. Calculations of the transverse sound attenuation as a function of temperature, frequency, polarization, and disorder are presented for the leading models of the superconducting order parameter. Measurements of the specific heat, thermal conductivity, and transverse sound attenuation place strong constraints on the orbital symmetry of the superconducting order parameter. We show that the superconducting A and B phases are in excellent agreement with pairing states belonging to the odd-parity E_{2u} orbital representation.Comment: 11 pages with 7 figure

    Fano resonances in plasmonic core-shell particles and the Purcell effect

    Full text link
    Despite a long history, light scattering by particles with size comparable with the light wavelength still unveils surprising optical phenomena, and many of them are related to the Fano effect. Originally described in the context of atomic physics, the Fano resonance in light scattering arises from the interference between a narrow subradiant mode and a spectrally broad radiation line. Here, we present an overview of Fano resonances in coated spherical scatterers within the framework of the Lorenz-Mie theory. We briefly introduce the concept of conventional and unconventional Fano resonances in light scattering. These resonances are associated with the interference between electromagnetic modes excited in the particle with different or the same multipole moment, respectively. In addition, we investigate the modification of the spontaneous-emission rate of an optical emitter at the presence of a plasmonic nanoshell. This modification of decay rate due to electromagnetic environment is referred to as the Purcell effect. We analytically show that the Purcell factor related to a dipole emitter oriented orthogonal or tangential to the spherical surface can exhibit Fano or Lorentzian line shapes in the near field, respectively.Comment: 28 pages, 10 figures; invited book chapter to appear in "Fano Resonances in Optics and Microwaves: Physics and Application", Springer Series in Optical Sciences (2018), edited by E. O. Kamenetskii, A. Sadreev, and A. Miroshnichenk

    Magnetic skyrmions and their lattices in triplet superconductors

    Full text link
    Complete topological classification of solutions in SO(3) symmetric Ginzburg-Landau free energy has been performed and a new class of solutions in weak external magnetic field carrying two units of magnetic flux has been identified. These solutions, magnetic skyrmions, do not have singular core like Abrikosov vortices and at low magnetic field become lighter for strongly type II superconductors. As a consequence, the lower critical magnetic field Hc1 is reduced by a factor of log(kappa). Magnetic skyrmions repel each other as 1/r at distances much larger then magnetic penetration depth forming relatively robust triangular lattice. Magnetic induction near Hc1 increases gradually as (H-Hc1)^2. This agrees very well with experiments on heavy fermion superconductor UPt3. Newly discovered Ru based compounds Sr2RuO4 and Sr2YRu(1-x)Cu(x)O6 are other possible candidates to possess skyrmion lattices. Deviations from exact SO(3) symmetry are also studied.Comment: 23 pages, 10 eps figure

    Two-dimensional Transport Induced Linear Magneto-Resistance in Topological Insulator Bi2_2Se3_3 Nanoribbons

    Full text link
    We report the study of a novel linear magneto-resistance (MR) under perpendicular magnetic fields in Bi2Se3 nanoribbons. Through angular dependence magneto-transport experiments, we show that this linear MR is purely due to two-dimensional (2D) transport, in agreement with the recently discovered linear MR from 2D topological surface state in bulk Bi2Te3, and the linear MR of other gapless semiconductors and graphene. We further show that the linear MR of Bi2Se3 nanoribbons persists to room temperature, underscoring the potential of exploiting topological insulator nanomaterials for room temperature magneto-electronic applications.Comment: ACS Nano, in pres

    Bulk and Boundary Critical Behavior at Lifshitz Points

    Full text link
    Lifshitz points are multicritical points at which a disordered phase, a homogeneous ordered phase, and a modulated ordered phase meet. Their bulk universality classes are described by natural generalizations of the standard Ď•4\phi^4 model. Analyzing these models systematically via modern field-theoretic renormalization group methods has been a long-standing challenge ever since their introduction in the middle of the 1970s. We survey the recent progress made in this direction, discussing results obtained via dimensionality expansions, how they compare with Monte Carlo results, and open problems. These advances opened the way towards systematic studies of boundary critical behavior at mm-axial Lifshitz points. The possible boundary critical behavior depends on whether the surface plane is perpendicular to one of the mm modulation axes or parallel to all of them. We show that the semi-infinite field theories representing the corresponding surface universality classes in these two cases of perpendicular and parallel surface orientation differ crucially in their Hamiltonian's boundary terms and the implied boundary conditions, and explain recent results along with our current understanding of this matter.Comment: Invited contribution to STATPHYS 22, to be published in the Proceedings of the 22nd International Conference on Statistical Physics (STATPHYS 22) of the International Union of Pure and Applied Physics (IUPAP), 4--9 July 2004, Bangalore, Indi

    Quantum magneto-optics of graphite family

    Full text link
    The optical conductivity of graphene, bilayer graphene, and graphite in quantizing magnetic fields is studied. Both dynamical conductivities, longitudinal and Hall's, are analytically evaluated. The conductivity peaks are explained in terms of electron transitions. We have shown that trigonal warping can be considered within the perturbation theory for strong magnetic fields larger than 1 T and in the semiclassical approach for weak fields when the Fermi energy is much larger than the cyclotron frequency. The main optical transitions obey the selection rule with \Deltan = 1 for the Landau number n, however the \Deltan = 2 transitions due to the trigonal warping are also possible. The Faraday/Kerr rotation and light transmission/reflection in the quantizing magnetic fields are calculated. Parameters of the Slonczewski-Weiss-McClure model are used in the fit taking into account the previous dHvA measurements and correcting some of them for the case of strong magnetic fields.Comment: 28 pages, 12 figures. arXiv admin note: text overlap with arXiv:1106.340
    • …
    corecore