14,527 research outputs found

    Research program of the Geodynamics Branch

    Get PDF
    This report is the Fourth Annual Summary of the Research Program of the Geodynamics Branch. The branch is located within the Laboratory for Terrestrial Physics of the Space and Earth Sciences Directorate of the Goddard Space Flight Center. The research activities of the branch staff cover a broad spectrum of geoscience disciplines including: tectonophysics, space geodesy, geopotential field modeling, and dynamic oceanography. The NASA programs which are supported by the work described in this document include the Geodynamics and Ocean Programs, the Crustal Dynamics Project and the proposed Ocean Topography Experiment (TOPEX). The reports highlight the investigations conducted by the Geodynamics Branch staff during calendar year 1985. The individual papers are grouped into chapters on Crustal Movements and Solid Earth Dynamics, Gravity Field Modeling and Sensing Techniques, and Sea Surface Topography. Further information on the activities of the branch or the particular research efforts described herein can be obtained through the branch office or from individual staff members

    Effects of specimen resonances on acoustic-ultrasonic testing

    Get PDF
    The effects of specimen resonances on acoustic ultrasonic (AU) nondestructive testing were investigated. Selected resonant frequencies and the corresponding normal mode nodal patterns of the aluminum block are measured up to 75.64 kHz. Prominent peaks in the pencil lead fracture and sphere impact spectra from the two transducer locations corresponded exactly to resonant frequencies of the block. It is established that the resonant frequencies of the block dominated the spectral content of the output signal. The spectral content of the output signals is further influenced by the transducer location relative to the resonant frequency nodal lines. Implications of the results are discussed in relation to AU parameters and measurements

    FEASIBILITY OF AN OKLAHOMA FRESH GREENS AND COWPEAS PACKING COOPERATIVE

    Get PDF
    Oklahoma's green producers are not benefiting from a growing fresh market. In order to seize the opportunities offered by the growing fresh market for leafy greens, investment in packing facilities have been evaluated. To make use of these facilities during summer months, the addition of a cowpea shelling enterprise is considered. A business plan for a new generation cooperative is estimated using an updated version of "The Packing Simulation Model" (PACKSIM) The business associates PACKSIM with @RISK®, to incorporate risks in the financial analysis.Agribusiness,

    A DMRG Study of Low-Energy Excitations and Low-Temperature Properties of Alternating Spin Systems

    Full text link
    We use the density matrix renormalization group (DMRG) method to study the ground and low-lying excited states of three kinds of uniform and dimerized alternating spin chains. The DMRG procedure is also employed to obtain low-temperature thermodynamic properties of these systems. We consider a 2N site system with spins s1s_1 and s2s_2 alternating from site to site and interacting via a Heisenberg antiferromagnetic exchange. The three systems studied correspond to (s1,s2)(s_1 ,s_2 ) being equal to (1,1/2),(3/2,1/2)(1,1/2),(3/2,1/2) and (3/2,1)(3/2,1); all of them have very similar properties. The ground state is found to be ferrimagnetic with total spin sG=N(s1s2)s_G =N(s_1 - s_2). We find that there is a gapless excitation to a state with spin sG1s_G -1, and a gapped excitation to a state with spin sG+1s_G +1. Surprisingly, the correlation length in the ground state is found to be very small for this gapless system. The DMRG analysis shows that the chain is susceptible to a conditional spin-Peierls instability. Furthermore, our studies of the magnetization, magnetic susceptibility χ\chi and specific heat show strong magnetic-field dependences. The product χT\chi T shows a minimum as a function of temperature T at low magnetic fields; the minimum vanishes at high magnetic fields. This low-field behavior is in agreement with earlier experimental observations. The specific heat shows a maximum as a function of temperature, and the height of the maximum increases sharply at high magnetic fields. Although all the three systems show qualitatively similar behavior, there are some notable quantitative differences between the systems in which the site spin difference, s1s2|s_1 - s_2|, is large and small respectively.Comment: 16 LaTeX pages, 13 postscript figure

    Canalizing Kauffman networks: non-ergodicity and its effect on their critical behavior

    Full text link
    Boolean Networks have been used to study numerous phenomena, including gene regulation, neural networks, social interactions, and biological evolution. Here, we propose a general method for determining the critical behavior of Boolean systems built from arbitrary ensembles of Boolean functions. In particular, we solve the critical condition for systems of units operating according to canalizing functions and present strong numerical evidence that our approach correctly predicts the phase transition from order to chaos in such systems.Comment: to be published in PR

    Supernova Remnant in a Stratified Medium: Explicit, Analytical Approximations for Adiabatic Expansion and Radiative Cooling

    Get PDF
    We propose simple, explicit, analytical approximations for the kinematics of an adiabatic blast wave propagating in an exponentially stratified ambient medium, and for the onset of radiative cooling, which ends the adiabatic era. Our method, based on the Kompaneets implicit solution and the Kahn approximation for the radiative cooling coefficient, gives straightforward estimates for the size, expansion velocity, and progression of cooling times over the surface, when applied to supernova remnants (SNRs). The remnant shape is remarkably close to spherical for moderate density gradients, but even a small gradient in ambient density causes the cooling time to vary substantially over the remnant's surface, so that for a considerable period there will be a cold dense expanding shell covering only a part of the remnant. Our approximation provides an effective tool for identifying the approximate parameters when planning 2-dimensional numerical models of SNRs, the example of W44 being given in a subsequent paper.Comment: ApJ accepted, 11 pages, 2 figures embedded, aas style with ecmatex.sty and lscape.sty package
    corecore