19 research outputs found

    A tight Tsirelson inequality for infinitely many outcomes

    Full text link
    We present a novel tight bound on the quantum violations of the CGLMP inequality in the case of infinitely many outcomes. Like in the case of Tsirelson's inequality the proof of our new inequality does not require any assumptions on the dimension of the Hilbert space or kinds of operators involved. However, it is seen that the maximal violation is obtained by the conjectured best measurements and a pure, but not maximally entangled, state. We give an approximate state which, in the limit where the number of outcomes tends to infinity, goes to the optimal state for this setting. This state might be potentially relevant for experimental verifications of Bell inequalities through multi-dimenisonal entangled photon pairs.Comment: 5 pages, 2 figures; improved presentation, change in title, as published

    Experimental violation of a spin-1 Bell inequality using maximally-entangled four-photon states

    Get PDF
    We demonstrate the first experimental violation of a spin-1 Bell inequality. The spin-1 inequality is a calculation based on the Clauser, Horne, Shimony and Holt formalism. For entangled spin-1 particles the maximum quantum mechanical prediction is 2.552 as opposed to a maximum of 2, predicted using local hidden variables. We obtained an experimental value of 2.27 ±0.02\pm 0.02 using the four-photon state generated by pulsed, type-II, stimulated parametric down-conversion. This is a violation of the spin-1 Bell inequality by more than 13 standard deviations.Comment: 5 pages, 3 figures, Revtex4. Problem with figures resolve

    Generalizing Tsirelson's bound on Bell inequalities using a min-max principle

    Full text link
    Bounds on the norm of quantum operators associated with classical Bell-type inequalities can be derived from their maximal eigenvalues. This quantitative method enables detailed predictions of the maximal violations of Bell-type inequalities.Comment: 4 pages, 2 figures, RevTeX4, replaced with published versio

    Bayesian Nash Equilibria and Bell Inequalities

    Full text link
    Games with incomplete information are formulated in a multi-sector probability matrix formalism that can cope with quantum as well as classical strategies. An analysis of classical and quantum strategy in a multi-sector extension of the game of Battle of Sexes clarifies the two distinct roles of nonlocal strategies, and establish the direct link between the true quantum gain of game's payoff and the breaking of Bell inequalities.Comment: 6 pages, LaTeX JPSJ 2 column format, changes in sections 1, 3 and 4, added reference

    Optimal eavesdropping in quantum cryptography with six states

    Get PDF
    A generalization of the quantum cryptographic protocol by Bennett and Brassard is discussed, using three conjugate bases, i.e. six states. By calculating the optimal mutual information between sender and eavesdropper it is shown that this scheme is safer against eavesdropping on single qubits than the one based on two conjugate bases. We also address the question for a connection between the maximal classical correlation in a generalized Bell inequality and the intersection of mutual informations between sender/receiver and sender/eavesdropper.Comment: 4 pages, 1 figur

    Violating Bell's inequality beyond Cirel'son's bound

    Get PDF
    Cirel'son inequality states that the absolute value of the combination of quantum correlations appearing in the Clauser-Horne-Shimony-Holt (CHSH) inequality is bound by 222 \sqrt 2. It is shown that the correlations of two qubits belonging to a three-qubit system can violate the CHSH inequality beyond 222 \sqrt 2. Such a violation is not in conflict with Cirel'son's inequality because it is based on postselected systems. The maximum allowed violation of the CHSH inequality, 4, can be achieved using a Greenberger-Horne-Zeilinger state.Comment: REVTeX4, 4 page

    Quantum Communication between N partners and Bell's inequalities

    Full text link
    We consider a family of quantum communication protocols involving NN partners. We demonstrate the existence of a link between the security of these protocols against individual attacks by the eavesdropper, and the violation of some Bell's inequalities, generalizing the link that was noticed some years ago for two-partners quantum cryptography. The arguments are independent of the local hidden variable debate.Comment: 4 pages, 2 figure

    Violations of local realism by two entangled quNits are stronger than for two qubits

    Get PDF
    Tests of local realism vs quantum mechanics based on Bell's inequality employ two entangled qubits. We investigate the general case of two entangled quNits, i.e. quantum systems defined in an N-dimensional Hilbert space. Via a numerical linear optimization method we show that violations of local realism are stronger for two maximally entangled quNits (N=3,4,...,9), than for two qubits and that they increase with N. The two quNit measurements can be experimentally realized using entangled photons and unbiased multiport beamsplitters.Comment: 5 pages, 2 pictures, LaTex, two columns; No changes in the result

    Maximal Violation of Bell's Inequalities for Continuous Variable Systems

    Full text link
    We generalize Bell's inequalities to biparty systems with continuous quantum variables. This is achieved by introducing the Bell operator in perfect analogy to the usual spin-1/2 systems. It is then demonstrated that two-mode squeezed vacuum states display quantum nonlocality by using the generalized Bell operator. In particular, the original Einstein-Podolsky-Rosen entangled states, which are the limiting case of the two-mode squeezed vacuum states, can maximally violate Bell's inequality due to Clauser, Horne, Shimony and Holt. The experimental aspect of our scheme and nonlocality of arbitrary biparticle entangled pure states of continuous variables are briefly considered.Comment: RevTEX, 4 pages, no figure. An important note was adde

    Quantum Matching Pennies Game

    Full text link
    A quantum version of the Matching Pennies (MP) game is proposed that is played using an Einstein-Podolsky-Rosen-Bohm (EPR-Bohm) setting. We construct the quantum game without using the state vectors, while considering only the quantum mechanical joint probabilities relevant to the EPR-Bohm setting. We embed the classical game within the quantum game such that the classical MP game results when the quantum mechanical joint probabilities become factorizable. We report new Nash equilibria in the quantum MP game that emerge when the quantum mechanical joint probabilities maximally violate the Clauser-Horne-Shimony-Holt form of Bell's inequality.Comment: Revised in light of referees' comments, submitted to Journal of the Physical Society of Japan, 14 pages, 1 figur
    corecore