Tests of local realism vs quantum mechanics based on Bell's inequality employ
two entangled qubits. We investigate the general case of two entangled quNits,
i.e. quantum systems defined in an N-dimensional Hilbert space. Via a numerical
linear optimization method we show that violations of local realism are
stronger for two maximally entangled quNits (N=3,4,...,9), than for two qubits
and that they increase with N. The two quNit measurements can be experimentally
realized using entangled photons and unbiased multiport beamsplitters.Comment: 5 pages, 2 pictures, LaTex, two columns; No changes in the result