1,273 research outputs found

    Natural regulatory (CD4+CD25+FOXP+) T cells control the production of pro-inflammatory cytokines during Plasmodium chabaudi adami infection and do not contribute to immune evasion.

    Get PDF
    Different functions have been attributed to natural regulatory CD4+CD25+FOXP+ (Treg) cells during malaria infection. Herein, we assessed the role for Treg cells during infections with lethal (DS) and non-lethal (DK) Plasmodium chabaudi adami parasites, comparing the levels of parasitemia, inflammation and anaemia. Independent of parasite virulence, the population of splenic Treg cells expanded during infection, and the absolute numbers of activated CD69+ Treg cells were higher in DS-infected mice. In vivo depletion of CD25+ T cells, which eliminated 80% of CD4+FOXP3+CD25+ T cells and 60–70% of CD4+FOXP3+ T cells, significantly decreased the number of CD69+ Treg cells in mice with lethal malaria. As a result, higher parasite burden and morbidity were measured in the latter, whereas the kinetics of infection with non-lethal parasites remained unaffected. In the absence of Treg cells, parasite-specific IFN-γ responses by CD4+ T cells increased significantly, both in mice with lethal and non-lethal infections, whereas IL-2 production was only stimulated in mice with non-lethal malaria. Following the depletion of CD25+ T cells, the production of IL-10 by CD90− cells was also enhanced in infected mice. Interestingly, a potent induction of TNF- and IFN-γ production by CD4+ and CD90− lymphocytes was measured in DS-infected mice, which also suffered severe anaemia earlier than non-depleted infected controls. Taken together, our data suggest that the expansion and activation of natural Treg cells represent a counter-regulatory response to the overwhelming inflammation associated with lethal P.c. adami. This response to infection involves TH1 lymphocytes as well as cells from the innate immune system

    Controls on the fate and transport of methylmercury in a boreal headwater catchment, northwestern Ontario, Canada

    No full text
    International audienceThe fate and transport of methylmercury (MeHg) were studied in a small boreal catchment. Hydrological processes largely govern the magnitude of the flux of MeHg. Seasonal and inter-annual variability in hydrology produce variable source strengths of MeHg throughout the catchment. The mass flux of MeHg within, and from the catchment is dependent on the mass flux of water and the relative placement of landscape units in the catchment hydrological cascade. Hydrology also governs the maintenance of the methylating environments in the catchment. Specifically, hydrological processes maintain zones of anoxia in both the catchment uplands and peatlands that support obligate anaerobic sulphate-reducing bacteria. In addition, groundwater flow paths are an essential control on the delivery of sulphate to these bacteria that facilitate in situ mercury methylation. Keywords: methylmercury, methylation, hydrology, boreal catchment, peatland, Ontario, Canada</p

    Neutrino Bremsstrahlung Process in highly degenerate magnetized electron gas

    Full text link
    In this article the neutrino bremsstrahlung process is considered in presence of strong magnetic field, though the calculations for this process in absence of magnetic field are also carried out simultaneously. The electrons involved in this process are supposed to be highly degenerate and relativistic. The scattering cross sections and energy loss rates for both cases, in presence and absence of magnetic field, are calculated in the extreme-relativistic limit. Two results are compared in the range of temperature 5.9×1095.9\times 10^{9} K <T1011< T\leq 10^{11} K and magnetic field 1014101610^{14} - 10^{16} G at a fixed density 1015\sim 10^{15} gm/ccgm/cc, a typical environment during the cooling of magnetized neutron star. The interpretation of our result is briefly discussed and the importance of this process during the stellar evolution is speculated.Comment: 12 pages including 2 figures and 1 tabl

    Unzipping DNA with Optical Tweezers: High Sequence Sensitivity and Force Flips

    Get PDF
    AbstractForce measurements are performed on single DNA molecules with an optical trapping interferometer that combines subpiconewton force resolution and millisecond time resolution. A molecular construction is prepared for mechanically unzipping several thousand-basepair DNA sequences in an in vitro configuration. The force signals corresponding to opening and closing the double helix at low velocity are studied experimentally and are compared to calculations assuming thermal equilibrium. We address the effect of the stiffness on the basepair sensitivity and consider fluctuations in the force signal. With respect to earlier work performed with soft microneedles, we obtain a very significant increase in basepair sensitivity: presently, sequence features appearing at a scale of 10 basepairs are observed. When measured with the optical trap the unzipping force exhibits characteristic flips between different values at specific positions that are determined by the base sequence. This behavior is attributed to bistabilities in the position of the opening fork; the force flips directly reflect transitions between different states involved in the time-averaging of the molecular system

    Pulling a polymer out of a potential well and the mechanical unzipping of DNA

    Full text link
    Motivated by the experiments on DNA under torsion, we consider the problem of pulling a polymer out of a potential well by a force applied to one of its ends. If the force is less than a critical value, then the process is activated and has an activation energy proportinal to the length of the chain. Above this critical value, the process is barrierless and will occur spontaneously. We use the Rouse model for the description of the dynamics of the peeling out and study the average behaviour of the chain, by replacing the random noise by its mean. The resultant mean-field equation is a nonlinear diffusion equation and hence rather difficult to analyze. We use physical arguments to convert this in to a moving boundary value problem, which can then be solved exactly. The result is that the time tpot_{po} required to pull out a polymer of NN segments scales like N2N^2. For models other than the Rouse, we argue that tpoN1+νt_{po}\sim N^{1+\nu}Comment: 11 pages, 6 figures. To appear in PhysicalReview

    Challenges at the Base of the Pyramid

    Get PDF

    Challenges at the Base of the Pyramid

    Get PDF

    Crossover from Luttinger- to Fermi-liquid behavior in strongly anisotropic systems in large dimensions

    Full text link
    We consider the low-energy region of an array of Luttinger liquids coupled by a weak interchain hopping. The leading logarithmic divergences can be re-summed to all orders within a self-consistent perturbative expansion in the hopping, in the large-dimension limit. The anomalous exponent scales to zero below the one-particle crossover temperature. As a consequence, coherent quasiparticles with finite weight appear along the whole Fermi surface. Extending the expansion self-consistently to all orders turns out to be crucial in order to restore the correct Fermi-liquid behavior.Comment: Shortened version to appear in Physical Review Letter

    Coulomb singularity effects in tunnelling spectroscopy of individual impurities

    Full text link
    Non-equilibrium Coulomb effects in resonant tunnelling processes through deep impurity states are analyzed. It is shown that Coulomb vertex corrections to the tunnelling transfer amplitude lead to a power-law singularity in current- voltage characteristicsComment: 7 pages, 2 figure
    corecore