261 research outputs found
Universal diffusion near the golden chaos border
We study local diffusion rate in Chirikov standard map near the critical
golden curve. Numerical simulations confirm the predicted exponent
for the power law decay of as approaching the golden curve via principal
resonances with period (). The universal
self-similar structure of diffusion between principal resonances is
demonstrated and it is shown that resonances of other type play also an
important role.Comment: 4 pages Latex, revtex, 3 uuencoded postscript figure
Fractal Conductance Fluctuations in a Soft Wall Stadium and a Sinai Billiard
Conductance fluctuations have been studied in a soft wall stadium and a Sinai
billiard defined by electrostatic gates on a high mobility semiconductor
heterojunction. These reproducible magnetoconductance fluctuations are found to
be fractal confirming recent theoretical predictions of quantum signatures in
classically mixed (regular and chaotic) systems. The fractal character of the
fluctuations provides direct evidence for a hierarchical phase space structure
at the boundary between regular and chaotic motion.Comment: 4 pages, 4 figures, data on Sinai geometry added to Fig.1, minor
change
Asymptotic Statistics of Poincar\'e Recurrences in Hamiltonian Systems with Divided Phase Space
By different methods we show that for dynamical chaos in the standard map
with critical golden curve the Poincar\'e recurrences P(\tau) and correlations
C(\tau) asymptotically decay in time as P ~ C/\tau ~ 1/\tau^3. It is also
explained why this asymptotic behavior starts only at very large times. We
argue that the same exponent p=3 should be also valid for a general chaos
border.Comment: revtex, 4 pages, 3 ps-figure
Quantum Poincar\'e Recurrences
We show that quantum effects modify the decay rate of Poincar\'e recurrences
P(t) in classical chaotic systems with hierarchical structure of phase space.
The exponent p of the algebraic decay P(t) ~ 1/t^p is shown to have the
universal value p=1 due to tunneling and localization effects. Experimental
evidence of such decay should be observable in mesoscopic systems and cold
atoms.Comment: revtex, 4 pages, 4 figure
Dissipative chaotic scattering
We show that weak dissipation, typical in realistic situations, can have a
metamorphic consequence on nonhyperbolic chaotic scattering in the sense that
the physically important particle-decay law is altered, no matter how small the
amount of dissipation. As a result, the previous conclusion about the unity of
the fractal dimension of the set of singularities in scattering functions, a
major claim about nonhyperbolic chaotic scattering, may not be observable.Comment: 4 pages, 2 figures, revte
New Class of Eigenstates in Generic Hamiltonian Systems
In mixed systems, besides regular and chaotic states, there are states
supported by the chaotic region mainly living in the vicinity of the hierarchy
of regular islands. We show that the fraction of these hierarchical states
scales as and relate the exponent to the
decay of the classical staying probability . This is
numerically confirmed for the kicked rotor by studying the influence of
hierarchical states on eigenfunction and level statistics.Comment: 4 pages, 3 figures, Phys. Rev. Lett., to appea
Chaotic Diffusion on Periodic Orbits: The Perturbed Arnol'd Cat Map
Chaotic diffusion on periodic orbits (POs) is studied for the perturbed
Arnol'd cat map on a cylinder, in a range of perturbation parameters
corresponding to an extended structural-stability regime of the system on the
torus. The diffusion coefficient is calculated using the following PO formulas:
(a) The curvature expansion of the Ruelle zeta function. (b) The average of the
PO winding-number squared, , weighted by a stability factor. (c) The
uniform (nonweighted) average of . The results from formulas (a) and (b)
agree very well with those obtained by standard methods, for all the
perturbation parameters considered. Formula (c) gives reasonably accurate
results for sufficiently small parameters corresponding also to cases of a
considerably nonuniform hyperbolicity. This is due to {\em uniformity sum
rules} satisfied by the PO Lyapunov eigenvalues at {\em fixed} . These sum
rules follow from general arguments and are supported by much numerical
evidence.Comment: 6 Tables, 2 Figures (postscript); To appear in Physical Review
Quantum Breaking Time Scaling in the Superdiffusive Dynamics
We show that the breaking time of quantum-classical correspondence depends on
the type of kinetics and the dominant origin of stickiness. For sticky dynamics
of quantum kicked rotor, when the hierarchical set of islands corresponds to
the accelerator mode, we demonstrate by simulation that the breaking time
scales as with the transport exponent
that corresponds to superdiffusive dynamics. We discuss also other
possibilities for the breaking time scaling and transition to the logarithmic
one with respect to
Ulam method for the Chirikov standard map
We introduce a generalized Ulam method and apply it to symplectic dynamical
maps with a divided phase space. Our extensive numerical studies based on the
Arnoldi method show that the Ulam approximant of the Perron-Frobenius operator
on a chaotic component converges to a continuous limit. Typically, in this
regime the spectrum of relaxation modes is characterized by a power law decay
for small relaxation rates. Our numerical data show that the exponent of this
decay is approximately equal to the exponent of Poincar\'e recurrences in such
systems. The eigenmodes show links with trajectories sticking around stability
islands.Comment: 13 pages, 13 figures, high resolution figures available at:
http://www.quantware.ups-tlse.fr/QWLIB/ulammethod/ minor corrections in text
and fig. 12 and revised discussio
- âŠ