94,501 research outputs found

    Performance management system enhancement and maintenance

    Get PDF
    The research described in this report concludes a two-year effort to develop a Performance Management System (PMS) for the NCC computers. PMS provides semi-automated monthly reports to NASA and contractor management on the status and performance of the NCC computers in the TDRSS program. Throughout 1984, PMS was tested, debugged, extended, and enhanced. Regular PMS monthly reports were produced and distributed. PMS continues to operate at the NCC under control of Bendix Corp. personnel

    Thermal expansion properties of composite materials

    Get PDF
    Thermal expansion data for several composite materials, including generic epoxy resins, various graphite, boron, and glass fibers, and unidirectional and woven fabric composites in an epoxy matrix, were compiled. A discussion of the design, material, environmental, and fabrication properties affecting thermal expansion behavior is presented. Test methods and their accuracy are discussed. Analytical approaches to predict laminate coefficients of thermal expansion (CTE) based on lamination theory and micromechanics are also included. A discussion is included of methods of tuning a laminate to obtain a near-zero CTE for space applications

    A real time spectrum to dose conversion system

    Get PDF
    A system has been developed which permits the determination of dose in real time or near real time directly from the pulse-height output of a radiation spectrometer. The technique involves the use of the resolution matrix of a spectrometer, the radiation energy-to-dose conversion function, and the geometrical factors, although the order of matrix operations is reversed. The new technique yields a result which is mathematically identical to the standard method while requiring no matrix manipulations or resolution matrix storage in the remote computer. It utilizes only a single function for each type dose required and each geometric factor involved

    Modern control concepts in hydrology

    Get PDF
    Two approaches to an identification problem in hydrology are presented based upon concepts from modern control and estimation theory. The first approach treats the identification of unknown parameters in a hydrologic system subject to noisy inputs as an adaptive linear stochastic control problem; the second approach alters the model equation to account for the random part in the inputs, and then uses a nonlinear estimation scheme to estimate the unknown parameters. Both approaches use state-space concepts. The identification schemes are sequential and adaptive and can handle either time invariant or time dependent parameters. They are used to identify parameters in the Prasad model of rainfall-runoff. The results obtained are encouraging and conform with results from two previous studies; the first using numerical integration of the model equation along with a trial-and-error procedure, and the second, by using a quasi-linearization technique. The proposed approaches offer a systematic way of analyzing the rainfall-runoff process when the input data are imbedded in noise

    Remote control of an impact demonstration vehicle

    Get PDF
    Uplink and downlink telemetry systems were installed in a Boeing 720 aircraft that was remotely flown from Rogers Dry Lake at Edwards Air Force Base and impacted into a designated crash site on the lake bed. The controlled impact demonstration (CID) program was a joint venture by the National Aeronautics and Space Administration (NASA) and the Federal Aviation Administration (FAA) to test passenger survivability using antimisting kerosene (AMK) to inhibit postcrash fires, improve passenger seats and restraints, and improve fire-retardent materials. The uplink telemetry system was used to remotely control the aircraft and activate onboard systems from takeoff until after impact. Aircraft systems for remote control, aircraft structural response, passenger seat and restraint systems, and anthropomorphic dummy responses were recorded and displayed by the downlink stems. The instrumentation uplink and downlink systems are described

    Solubility of refractory metals and alloys in potassium and in lithium

    Get PDF
    Solubility of refractory metals and alloys in liquid potassium and lithiu

    Spacelab energetic ion mass spectrometer

    Get PDF
    Basic design criteria are given for an ion mass spectrometer for use in studying magnetospheric ion populations. The proposed instrument is composed of an electrostatic analyzer followed by a magnetic spectrometer and simultaneously measures the energy per unit and mass per unit charge of the ion species. An electromagnet is used for momentum analysis to extend the operational energy range over a much wider domain than is possible with the permanent magnets used in previous flights. The energetic ion source regions, ion energization mechanisms, field line tracing, coordinated investigations, and orbit considerations are discussed and operations of the momentum analyzer and of the electrostatic energy analyzer are examined
    corecore