250 research outputs found

    A Comparative Study of Contributions to ϵK\epsilon_K in the RS Model

    Full text link
    We contrast the impact of Higgs mediated flavor changing neutral currents on epsilon_K in the framework of a warped extra dimension that was recently calculated by Azatov et al. with the older results for Kaluza-Klein gluon induced corrections to that observable. We find that the most stringent constraint on the KK scale for a Higgs field localized on the infrared brane for reasonable additional assumptions comes from KK gluon exchange. In the case of a bulk Higgs field we show that for certain scenarios the Higgs contribution can in fact exceed the KK gluon contribution. In the course of this analysis we also describe in detail the different renormalization procedures that have to be employed in the KK gluon and Higgs cases to relate the new physics at high energies to low energy observables.Comment: 13 pages, 5 figures. Extended discussion, references added, typos correcte

    Ionization dynamics in intense pulsed laser radiation. Effects of frequency chirping

    Full text link
    Via a non-perturbative method we study the population dynamics and photoelectron spectra of Cs atoms subject to intense chirped laser pulses, with gaussian beams. We include above threshold ionization spectral peaks. The frequency of the laser is near resonance with the 6s-7p transition. Dominant couplings are included exactly, weaker ones accounted for perturbatively. We calculate the relevant transition matrix elements, including spin-orbit coupling. The pulse is taken to be a hyperbolic secant in time and the chirping a hyperbolic tangent. This choice allows the equations of motions for the probability amplitudes to be solved analytically as a series expansion in the variable u=(tanh(pi t/tau)+1)/2, where tau is a measure of the pulse length. We find that the chirping changes the ionization dynamics and the photoelectron spectra noticeably, especially for longer pulses of the order of 10^4 a.u. The peaks shift and change in height, and interference effects between the 7p levels are enhanced or diminished according to the amount of chirping and its sign. The integrated ionization probability is not strongly affected.Comment: Accepted by J. Phys. B; 18 pages, 17 figures. Latex, uses ioplppt.sty, iopl10.sty and psfig.st

    Electroweak and Flavour Structure of a Warped Extra Dimension with Custodial Protection

    Full text link
    We present the electroweak and flavour structure of a model with a warped extra dimension and the bulk gauge group SU(3) x SU(2)_L x SU(2)_R x P_LR x U(1)_X. The presence of SU(2)_R implies an unbroken custodial symmetry in the Higgs system allowing to eliminate large contributions to the T parameter, whereas the P_LR symmetry and the enlarged fermion representations provide a custodial symmetry for flavour diagonal and flavour changing couplings of the SM Z boson to left-handed down-type quarks. We diagonalise analytically the mass matrices of charged and neutral gauge bosons including the first KK modes. We present the mass matrices for quarks including heavy KK modes and discuss the neutral and charged currents involving light and heavy fields. We give the corresponding complete set of Feynman rules in the unitary gauge.Comment: 74 pages, 2 figures. clarifying comments and references added, version to be published in JHE

    Capacitance free generation and detection of subpicosecond electrical pulses on coplanar transmission lines

    Get PDF
    Based on a reanalysis of previous work and new experimental measurements, we conclude that the parasitic capacitance at the generation site is negligible for sliding contact excitation of small dimension coplanar transmission lines.Peer reviewedElectrical and Computer Engineerin

    The Impact of a 4th Generation on Mixing and CP Violation in the Charm System

    Full text link
    We study D0-D0 mixing in the presence of a fourth generation of quarks. In particular, we calculate the size of the allowed CP violation which is found at the observable level well beyond anything possible with CKM dynamics. We calculate the semileptonic asymmetry a_SL and the mixing induced CP asymmetry eta_fS_f which are correlated with each other. We also investigate the correlation of eta_fS_f with a number of prominent observables in other mesonic systems like epsilon'/epsilon, Br(K_L -> pi0 nu nu), Br(K+ -> pi+ nu nu), Br(B_s ->mu+ mu-), Br(B_d -> mu+ mu-) and finally S_psi phi in the B_s system. We identify a clear pattern of flavour and CP violation predicted by the SM4 model: While simultaneous large 4G effects in the K and D systems are possible, accompanying large NP effects in the B_d system are disfavoured. However this behaviour is not as pronounced as found for the LHT and RSc models. In contrast to this, sizeable CP violating effects in the B_s system are possible unless extreme effects in eta_fS_f are found, and Br(B_s ->mu+ mu-) can be strongly enhanced regardless of the situation in the D system. We find that, on the other hand, S_psi phi > 0.2 combined with the measured epsilon'/epsilon significantly diminishes 4G effects within the D system.Comment: 22 pages, 23 figures, v2 (references added

    Modeling magnetospheric fields in the Jupiter system

    Full text link
    The various processes which generate magnetic fields within the Jupiter system are exemplary for a large class of similar processes occurring at other planets in the solar system, but also around extrasolar planets. Jupiter's large internal dynamo magnetic field generates a gigantic magnetosphere, which is strongly rotational driven and possesses large plasma sources located deeply within the magnetosphere. The combination of the latter two effects is the primary reason for Jupiter's main auroral ovals. Jupiter's moon Ganymede is the only known moon with an intrinsic dynamo magnetic field, which generates a mini-magnetosphere located within Jupiter's larger magnetosphere including two auroral ovals. Ganymede's magnetosphere is qualitatively different compared to the one from Jupiter. It possesses no bow shock but develops Alfv\'en wings similar to most of the extrasolar planets which orbit their host stars within 0.1 AU. New numerical models of Jupiter's and Ganymede's magnetospheres presented here provide quantitative insight into the processes that maintain these magnetospheres. Jupiter's magnetospheric field is approximately time-periodic at the locations of Jupiter's moons and induces secondary magnetic fields in electrically conductive layers such as subsurface oceans. In the case of Ganymede, these secondary magnetic fields influence the oscillation of the location of its auroral ovals. Based on dedicated Hubble Space Telescope observations, an analysis of the amplitudes of the auroral oscillations provides evidence that Ganymede harbors a subsurface ocean. Callisto in contrast does not possess a mini-magnetosphere, but still shows a perturbed magnetic field environment. Callisto's ionosphere and atmospheric UV emission is different compared to the other Galilean satellites as it is primarily been generated by solar photons compared to magnetospheric electrons.Comment: Chapter for Book: Planetary Magnetis

    Changes in labial capillary density on ascent to and descent from high altitude

    Get PDF
    Present knowledge of how the microcirculation is altered by prolonged exposure to hypoxia at high altitude is incomplete and modification of existing analytical techniques may improve our knowledge considerably. We set out to use a novel simplified method of measuring in vivo capillary density during an expedition to high altitude using a CytoCam incident dark field imaging video-microscope. The simplified method of data capture involved recording one-second images of the mucosal surface of the inner lip to reveal data about microvasculature density in ten individuals. This was done on ascent to, and descent from, high altitude. Analysis was conducted offline by two independent investigators blinded to the participant identity, testing conditions and the imaging site. Additionally we monitored haemoglobin concentration and haematocrit data to see if we could support or refute mechanisms of altered density relating to vessel recruitment. Repeated sets of paired values were compared using Kruskall Wallis Analysis of Variance tests, whilst comparisons of values between sites was by related samples Wilcoxon Signed Rank Test. Correlation between different variables was performed using Spearman’s rank correlation coefficient, and concordance between analysing investigators using intra-class correlation coefficient. There was a significant increase in capillary density from London on ascent to high altitude; median capillaries per field of view area increased from 22.8 to 25.3 (p=0.021). There was a further increase in vessel density during the six weeks spent at altitude (25.3 to 32.5, p=0.017). Moreover, vessel density remained high on descent to Kathmandu (31.0 capillaries per field of view area), despite a significant decrease in haemoglobin concentration and haematocrit. Using a simplified technique, we have demonstrated an increase in capillary density on early and sustained exposure to hypobaric hypoxia at thigh altitude, and that this remains elevated on descent to normoxia. The technique is simple, reliable and reproducible

    The Custodial Randall-Sundrum Model: From Precision Tests to Higgs Physics

    Full text link
    We reexamine the Randall-Sundrum (RS) model with enlarged gauge symmetry SU(2)_L x SU(2)_R x U(1)_X x P_LR in the presence of a brane-localized Higgs sector. In contrast to the existing literature, we perform the Kaluza-Klein (KK) decomposition within the mass basis, which avoids the truncation of the KK towers. Expanding the low-energy spectrum as well as the gauge couplings in powers of the Higgs vacuum expectation value, we obtain analytic formulas which allow for a deep understanding of the model-specific protection mechanisms of the T parameter and the left-handed Z-boson couplings. In particular, in the latter case we explain which contributions escape protection and identify them with the irreducible sources of P_LR symmetry breaking. We furthermore show explicitly that no protection mechanism is present in the charged-current sector confirming existing model-independent findings. The main focus of the phenomenological part of our work is a detailed discussion of Higgs-boson couplings and their impact on physics at the CERN Large Hadron Collider. For the first time, a complete one-loop calculation of all relevant Higgs-boson production and decay channels is presented, incorporating the effects stemming from the extended electroweak gauge-boson and fermion sectors.Comment: 74 pages, 13 figures, 3 tables. v2: Matches version published in JHE

    A Novel System for Transcutaneous Application of Carbon Dioxide Causing an “Artificial Bohr Effect” in the Human Body

    Get PDF
    BACKGROUND: Carbon dioxide (CO(2)) therapy refers to the transcutaneous administration of CO(2) for therapeutic purposes. This effect has been explained by an increase in the pressure of O(2) in tissues known as the Bohr effect. However, there have been no reports investigating the oxygen dissociation of haemoglobin (Hb) during transcutaneous application of CO(2)in vivo. In this study, we investigate whether the Bohr effect is caused by transcutaneous application of CO2 in human living body. METHODS: We used a novel system for transcutaneous application of CO(2) using pure CO(2) gas, hydrogel, and a plastic adaptor. The validity of the CO(2) hydrogel was confirmed in vitro using a measuring device for transcutaneous CO(2) absorption using rat skin. Next, we measured the pH change in the human triceps surae muscle during transcutaneous application of CO(2) using phosphorus-31 magnetic resonance spectroscopy ((31)P-MRS) in vivo. In addition, oxy- and deoxy-Hb concentrations were measured with near-infrared spectroscopy in the human arm with occulted blood flow to investigate O2 dissociation from Hb caused by transcutaneous application of CO(2). RESULTS: The rat skin experiment showed that CO(2) hydrogel enhanced CO(2) gas permeation through the rat skin. The intracellular pH of the triceps surae muscle decreased significantly 10 min. after transcutaneous application of CO(2). The NIRS data show the oxy-Hb concentration decreased significantly 4 min. after CO(2) application, and deoxy-Hb concentration increased significantly 2 min. after CO(2) application in the CO(2)-applied group compared to the control group. Oxy-Hb concentration significantly decreased while deoxy-Hb concentration significantly increased after transcutaneous CO(2) application. CONCLUSIONS: Our novel transcutaneous CO(2) application facilitated an O(2) dissociation from Hb in the human body, thus providing evidence of the Bohr effect in vivo
    corecore