29 research outputs found

    Superconductivity in the Hubbard model with correlated hopping: Slave-boson study

    Full text link
    The slave boson mean-field studies of the ground state of the Hubbard model with correlated hopping were performed. The approach qualitatively recovers the exact results for the case of the hopping integral t equal to the correlated hopping integral X. The phase diagram for the strongly correlated state with only singly occupied sites, the weakly correlated state, where single and double occupation is allowed, and for the superconducting state, was determined for any values of X and any electron concentration n. At the half-filled band (n=1) a direct transition from the superconductor to the Mott insulator was found. In the region of strong correlations the superconducting solution is stable for n close to 1, in contrast to the case of weak correlations, in which superconductivity occurs at n close to 0 and n close to 2. We found also that strong correlations change characteristics of the superconducting phase, e.g. the gap in the excitation spectrum has a nonexponential dependence close to the point of the phase transition.Comment: 13 pages, 24 Postscript figures (in 12 files

    Dynamical correlations in electronic transport through a system of coupled quantum dots

    Full text link
    Current auto- and cross-correlations are studied in a system of two capacitively coupled quantum dots. We are interested in a role of Coulomb interaction in dynamical correlations, which occur outside the Coulomb blockade region (for high bias). After decomposition of the current correlation functions into contributions between individual tunneling events, we can show which of them are relevant and lead to sub-/supper-Poissonian shot noise and negative/positive cross-correlations. The results are differentiated for a weak and strong inter-dot coupling. Interesting results are for the strong coupling case when electron transfer in one of the channel is strongly correlated with charge drag in the second channel. We show that cross-correlations are non-monotonic functions of bias voltage and they are in general negative (except some cases with asymmetric tunnel resistances). This is effect of local potential fluctuations correlated by Coulomb interaction, which mimics the Pauli exclusion principle

    Current and power spectrum in a magnetic tunnel device with an atomic size spacer

    Full text link
    Current and its noise in a ferromagnetic double tunnel barrier device with a small spacer particle were studied in the framework of the sequential tunneling approach. Analytical formulae were derived for electron tunneling through the spacer particle containing only a single energy level. It was shown that Coulomb interactions of electrons with a different spin orientation lead to an increase of the tunnel magnetoresistance. Interactions can also be responsible for the negative differential resistance. A current noise study showed, which relaxation processes can enhance or reduce fluctuations leading either to a super-Poissonian or a sub-Poissonian shot noise.Comment: 12 pages, 4 figure

    Charge fluctuations and feedback effect in shot noise in a Y-terminal system

    Full text link
    We investigate a dynamical Coulomb blockade effect and its role in the enhancement of current-current correlations in a three-terminal device with a multilevel splitter, as well as with two quantum dots. Spectral decomposition analysis shows that in the Y-terminal system with a two level ideal splitter, charge fluctuations at a level with a lowest outgoing tunneling rate are responsible for a super-Poissonian shot noise and positive cross-correlations. Interestingly, for larger source-drain voltages, electrons are transferred as independent particles, when three levels participate in transport, and double occupancy is allowed. We can explain compensation of the current correlations as the interplay between different bunching and antibunching processes by performing a spectral decomposition of the correlation functions for partial currents flowing through various levels. In the system with two quantum dots acting as a splitter, a long range feedback effect of fluctuating potentials leads to the dynamical Coulomb blockade and an enhancement of shot noise.Comment: 15 pages, 8 figure

    Nonequilibrium Steady States and Fano-Kondo Resonances in an AB Ring with a Quantum Dot

    Full text link
    Electron transport through a strongly correlated quantum dot (QD) embedded in an Aharonov-Bohm (AB) ring is investigated with the aid of the finite-U slave-boson mean-field (SBMF) approach extended to nonequilibrium regime. A nonequilibrium steady state (NESS) of the mean-field Hamiltonian is constructed with the aid of the C*-algebraic approach for studying infinitely extended systems. In the linear response regime, the Fano-Kondo resonances and AB oscillations of the conductance obtained from the SBMF approach are in good agreement with those from the numerical renormalization group technique (NRG) by Hofstetter et al. by using twice larger Coulomb interaction. At zero temperature and finite bias voltage, the resonance peaks of the differential conductance tend to split into two. At low bias voltage, the split of the asymmetric resonance can be observed as an increase of the conductance plateau. We also found that the differential conductance has zero-bias maximum or minimum depending on the background transmission via direct tunneling between the electrodes.Comment: 24 pages,17 figure

    Shot noise in ferromagnetic single electron tunneling devices

    Full text link
    Frequency dependent current noise in ferromagnetic double junctions with Coulomb blockade is studied theoretically in the limit of sequential tunneling. Two different relaxation processes are found in the correlations between spin polarized tunneling currents; low frequency spin fluctuations and high frequency charge fluctuations. Spin accumulation in strongly asymmetric junctions is shown to lead to a negative differential resistance. We also show that large spin noise activated in the range of negative differential resistance gives rise to a significant enhancement of the current noise.Comment: 8 pages, 13 eps-figures include
    corecore