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Abstract We present studies of the atomic limit of the ex-
tended Hubbard model with pair hopping for arbitrary elec-
tron density and arbitrary chemical potential. The Hamilto-
nian consists of (i) the effective on-site interaction U and
(ii) the intersite charge exchange term I , determining the
hopping of electron pairs between nearest-neighbour sites.
In the analysis of the phase diagrams and thermodynamic
properties of this model we treat the intersite interactions
within the mean-field approximation. In this report we fo-
cus on metastable phases and determine their ranges of oc-
currence. Our investigations in the absence of the external
magnetic field show that the system analysed exhibits tri-
critical behaviour. Two metastable phases (superconducting
and nonordered) can exist inside the regions of the phase
separated state stability and a first-order transition occurs
between these metastable phases.

Keywords Extended Hubbard model · Phase separation ·
Superconductivity · Metastability · Pair hopping · Phase
diagrams

1 Introduction

The superconductivity (SS) with very short coherence length
and the phase separation (PS) phenomenon involving SS
states are very current topics (for a review see [1–5] and ref-
erences therein). It is worthwhile to mention that metastable
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and unstable states have been found in many physical sys-
tems experimentally and theoretically.

In our work we will study a model which directly pertains
to that problem. The effective Hamiltonian considered has
the following form:

Ĥ = U
∑

i

n̂i↑n̂i↓ − 2I
∑

〈i,j〉
ρ̂+

i ρ̂−
j

− μ
∑

i

n̂i − B
∑

i

ŝz
i , (1)

where n̂i = ∑
σ n̂iσ , n̂iσ = ĉ+

iσ ĉiσ , ρ̂+
i = (ρ̂−

i )† = ĉ+
i↑ĉ+

i↓.
B = gμBHz is external magnetic field and
ŝz
i = (1/2)(n̂i↑ − n̂i↓) is z-component of the total spin at

i site.
∑

〈i,j〉 indicates the sum over nearest-neighbour sites

i and j independently; ĉ+
iσ (ĉiσ ) denotes the creation (an-

nihilation) operator of an electron with spin σ = ↑,↓ at the
site i, which satisfies canonical anticommutation relations:
{ĉiσ , ĉ+

jσ ′ } = δij δσσ ′ , {ĉiσ , ĉjσ ′ } = {ĉ+
iσ , ĉ+

jσ ′ } = 0, where δij

is the Kronecker delta; μ is the chemical potential, con-
nected with the concentration of electrons by the formula
n = (1/N)

∑
i 〈n̂i〉, with 0 ≤ n ≤ 2, and N is the total num-

ber of lattice sites. I0 = zI , where z is a number of the
nearest-neighbour sites and 〈Â〉 indicates the average value
of the operator Â in the grand canonical ensemble.

Model (1) exhibits (in the absence of the field con-
jugated with the superconducting (SS) order parameter
Δ = 1

N

∑
i〈ρ̂−〉) a symmetry between I > 0 (s-pairing) and

I < 0 (η-pairing, ηS, ΔηS = 1
N

∑
i exp (iQ · Ri )〈ρ̂−

i 〉, Q be-
ing half of the smallest reciprocal lattice vector) cases. Thus,
we restrict ourselves to the I > 0 case only. In the presence
of finite single electron hopping tij �= 0 the symmetry is bro-
ken in the general case [6–11].

Model (1) has been intensively analysed for B = 0
[4, 12–16] as well as for B �= 0 [5, 15] (in particular, in the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/191501841?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:konrad.kapcia@amu.edu.pl


914 J Supercond Nov Magn (2014) 27:913–917

context of the phase separation [4, 5]). In the analysis we
have adopted a variational approach (VA), which treats the
on-site interaction term (U ) exactly and the intersite inter-
action (I ) within the mean-field approximation (MFA). One
obtains two equations for n and Δ, which are solved self-
consistently. Explicit forms of equations for the energy and
other thermodynamical properties are derived in Refs. [4, 5,
15]. Condition Δ �= 0 is in the superconducting (SS) phase,
whereas in the nonordered (NO) phase Δ = 0. For fixed n,
the model can exhibit also the phase separation (PS) which
is a state with two coexisting domains (SS and NO) with
different electron concentrations, n− and n+. The free en-
ergy of the PS state can be derived in standard way, using
Maxwell’s construction (e.g. [4, 5, 17–19]). It is important
to find all homogeneous solutions at which grand canoni-
cal potential ω (free energy f ) has the local minimum with
respect to Δ if system is considered for fixed μ (or n).

We say that the solution (of the set of two self-consistent
equations for n and Δ) corresponds to a metastable phase if
it gives a (local) minimum of ω (or f ) with respect to Δ and
the stability condition ∂μ/∂n > 0 (system with fixed n) is
fulfilled. Otherwise, we say that the phase is unstable. A sta-
ble (homogeneous) phase is a metastable phase with the
lowest free energy (among all metastable phases and phase
separated states).

In the paper we have used the following convention.
A second- (first-)order transition is a transition between ho-
mogeneous phases with a (dis-)continuous change of the
order parameter at the transition temperature. A transition
between homogeneous phase and PS state is symbolically
named as a “third-order” transition [4, 5]. At this transition
a size of one domain in the PS state decreases continuously
to zero at the transition temperature. We have also distin-
guish a first-order transition between metastable phases.

The phase diagrams obtained are symmetric with respect
to half-filling because of the particle–hole symmetry of the
Hamiltonian (1) [1, 4, 5], so the diagrams will be presented
only in the range μ̄ = μ − U/2 ≤ 0 and 0 ≤ n ≤ 1.

In present report we will focus on the possibility of
the metastable phases occurrence on the phase diagrams of
model (1) in the absence of magnetic field (B = 0). The ef-
fects of B �= 0 are rather similar to those of U > 0 [4, 5, 15]
and we leave deeper analysis of the B �= 0 case to future
publications.

2 Numerical Results and Discussion (B = 0)

The overall behaviour of the system has been shown in [4, 5,
15]. The model considered exhibits interesting multicritical
behaviour including tricritical points.

In the range 2 < U/I0 < +∞, only the NO phase is sta-
ble at any T ≥ 0. For on-site attraction U/I0 < 0 (“local

Fig. 1 kBT /I0 vs. U/I0 phase diagram for n = 1 (I0 = zI ). Dotted
and solid lines denote first- and second-order transitions between sta-
ble phases. Dashed-dotted lines denote the boundaries of metastable
phase occurrence (names of metastable phases in brackets). T denotes
tricritical point

pair” limit), only the second-order SS–NO transitions be-
tween homogeneous phases occur with increasing tempera-
ture. The transition temperature is maximal for U → −∞,
μ̄ = 0 (n = 1) and decreases monotonically with increasing
U/I0 and |μ̄|/I0 = |n − 1|.

The most interesting is the range 0 < U/I0 < 2. In this
range there is smooth crossover into the “pair breaking”
limit and the SS–NO transition can also be of a first or-
der (for fixed μ̄) and the system exhibits phase separation
(for fixed n). The metastable phases exist in several defi-
nite ranges of model parameters as it will be discussed be-
low.

One should stress that metastable phases can occur
only at T > 0. At T = 0 one phase (state) can be stable
only. For T = 0 the discontinuous SS–NO transition oc-
curs at U/I0 = (μ̄/I0)

2 + 1 (for fixed |μ̄|/I0 < 1) whereas
the continuous SS–NO transition occurs at |μ̄|/I0 = 1 and
U/I0 < 2. The PS state stability region is determined by
conditions U/I0 ≤ 2 and |n − 1|2 ≤ U/I0 − 1 (n �= 1). At
n = 1 (μ̄ = 0) the discontinuous SS–NO transition occur
for U/I0 = 1. The extension (to the ground state) of the
end of the first-order transition line between metastable
phases (SS and NO) is located at U/I0 = 1 + |1 − n| (for
fixed n). The boundaries for the regions of the metasta-
bility of homogeneous phases at T > 0 near the ground
state are: for the NO phase, U/I0 = 2|μ̄|/I0 and |μ̄|/I0 < 1
(U/I0 = 2|n − 1|, any n); for the SS phase, U/I0 = 2 and
|μ̄|/I0 < 1 (any n). Note that for both homogeneous phases
the condition ∂μ/∂n ≥ 0 is fulfilled at T = 0 (in particular
in the ranges of the PS state occurrence)—cf. Sect. 3 of [4].
Let us point out that for T = 0 the discontinuous transition
between two NO phases with |n − 1| = 1 and n = 1 (Mott
state) occurs at U/I0 = 2|μ̄|/I0 and |μ̄|/I0 > 1, but it does
not exist for any T > 0.
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Fig. 2 kBT /I0 vs. μ̄/I0 phase diagrams (upper row) and correspond-
ing kBT /I0 vs. n diagrams (lower row) for U/I0 = 0.4, 0.9, 1.25 (as
labelled). Dotted, solid and dashed lines indicate first-order, second-

order and “third-order” boundaries, respectively. Dashed-dotted lines
indicate the boundaries of metastable phase occurrence (names of
metastable phases in brackets). T denotes tricritical point

2.1 The Half-Filling (μ̄ = 0, n = 1)

In Fig. 1 we present the phase diagram involving metastable
phases for half-filling (μ̄ = 0, n = 1). One can distinguish
four ranges of on-site repulsion, in which a different be-
haviour can occur: (i) 0 < U/I0 < 2

3 ln 2, the second-order
SS–NO transition is present and at low temperatures the
NO phase is metastable; (ii) 2

3 ln 2 < U/I0 < 0.557, the first-
order SS–NO transition occurs (it takes place in the whole
range 2

3 ln 2 < U/I0 < 1). Above this transition tempera-
ture the SS phase is metastable, whereas the NO phase
is metastable (close) below the transition temperature and
at low temperatures there is another region where the NO
phase is metastable; (iii) 0.557 < U/I0 < 1, there is one re-
gion of metastability of the NO phase, which extends from
T = 0; (iv) 1 < U/I0 < 2, there is no transitions with in-
creasing temperature and only the NO phase is stable. At
sufficiently low temperatures the SS phase is metastable.

Note that at n = 1 the VA results for model (1) can be
simply mapped onto these of the U–W model with W > 0
[17, 18, 20–24]. In such a case the SS phase corresponds
to the charge-ordered phase on the phase diagram [24]. The
results from Fig. 1 can be also transformed into the U–J

model [25–27] for n = 1 by generalized U ↔ −U Shiba’s
transformation [1, 28, 29]. In such a case the SS phase cor-
responds to the magnetic phase with simultaneous change
U → −U in the diagram in Fig. 1.

2.2 Arbitrary Electron Concentrations

In this section we present results for arbitrary concen-
tration n (and arbitrary chemical potential μ̄ = μ − U/2).
A few particular phase diagrams are shown in Fig. 2. Let us
discuss them in the order which corresponds to the ranges of
U/I0 mentioned in Sect. 2.1.

(i): 0<U/I0 < 2
3 ln 2. The phase diagrams for U/I0 =0.4

are shown in Fig. 2(a, b). The SS–NO transition between
(stable) homogeneous phases is a continuous one and its
temperature decreases monotonically with increasing U/I0

and |μ̄|/I0 = |n − 1|. Moreover, at sufficiently low temper-
atures, there is a region (extending from half-filling) of the
NO phase metastability.

(ii)/(iii): 2
3 ln 2 < U/I0 < 1. With the increasing of U/I0

in the vicinity of n = 1 (μ̄ = 0) the SS–NO transition
changes its order from second order to the first order and
the tricritical point T appears on the phase diagram (cf.
Fig. 2(c, d) for U/I0 = 0.9 and Fig. 3). It is quite obvious
that in the neighbourhood of the first-order SS–NO transi-
tion (for fixed μ̄) the regions of the metastable phases oc-
currence are present (above the transition temperature the
SS phase is metastable, whereas below the transition tem-
perature the NO phase is metastable). The first-order SS–
NO transition line (on the diagram for fixed μ̄) splits into
two “third-order” lines (on the diagram for fixed n) and the
PS state is stable at T > 0 in definite range of parameters
(between the “third-order” lines, for n �= 1). In the region
of the PS state occurrence (in which the PS state has the
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Fig. 3 kBT /I0 vs. μ̄/I0 phase diagrams for U/I0 = 0.55, 0.56 (as la-
belled). Above the first-order SS–NO boundary a narrow region of the
SS phase metastability is present (not indicated explicitly). Denotations
as in Fig. 1

lowest energy fPS) the first-order transition between two
metastable (homogeneous) phases (SS, NO) exists at T > 0.
Above this line the SS phase has the highest energy (i.e.
fSS > fNO > fPS), whereas below the line the energy of
the NO phase is higher than the energy of the SS phase
(fNO > fSS > fPS). The line of SS–NO first-order transition
between metastable phases ends at n = 1 and T > 0. One
metastable phase (SS or NO) can also exist in the regions of
homogeneous phases (NO or SS, respectively) stability for
fixed n (where the PS state does not exist), cf. Fig. 2(d).

The only difference between cases (ii) and (iii) is that
for U/I0 < 0.557 the separated region of the NO phase
metastability exists also at sufficiently low temperatures. For
U/I0 ≈ 0.557 that region connects with the NO phase re-
gion of metastability at higher temperatures (at half-filling,
cf. Figs. 1 and 3).

(iv) 1 < U/I0 < 2. The exemplary phase diagrams for
U/I0 = 1.25 are shown in Fig. 2(e, f). The line of SS–NO
first-order transition between stable phases (for fixed μ̄) and
metastable phases (for fixed n) ends at T = 0 and μ̄ < 0
(n < 1). The region of the PS state stability extends from
the ground state. The rest of the discussion is similar to the
case (ii)/(iii).

The thermodynamic properties of the model have been
analysed in [4, 5], therefore, we refer the reader to these pub-
lications. In particular, the behaviour of thermodynamic pa-
rameters in the PS state (as well as in the metastable phases)
has been widely discussed in Sect. 5 of [4].

3 Concluding Remarks

The results obtained are important for physics of phase
transitions as they involve the investigation of metastable
phases. They show that the SS phase metastable boundary
is not dependent on n and μ̄ for |μ̄| (|1 − n|) smaller than
those of T -point and that the (meta-)stable solutions for the
SS phase can exist only for temperatures lower than those of
T -point. The SS solution can be stable or metastable and ex-
ists only in regions indicated on phase diagrams. On the con-
trary, the NO phase solutions exist at any model parameters
and temperature. Outside the regions where the NO phase
is (meta-)stable, it is unstable. The first-order boundaries
found in [15] correspond to transitions between metastable
phases.

Note that the behaviour of metastable phases in model (1),
where two metastable phases (SS, NO) can exist in the
ranges of the PS state stability, is different than that in model
U–W1–W2 [17, 18, 23, 24] (with W1 > 0 and W2 < 0),
where the metastable phases cannot exist in the PS occur-
rence regions at sufficiently low temperatures (at T = 0 for
W2 < 0 ∂μ/∂n < 0 for fixed n in all homogeneous phases)
[17, 18, 24].

The on-site U term is the main factor determining the
pair binding energy and the on-site density-density fluctua-
tions in the model [4, 7, 15, 30]. Due to rigorous treatment
of this term within VA our major conclusions of the paper
concerning the behaviour of the model are reliable for arbi-
trary U . Moreover, the MFA treatment of the I term is exact
in the limit of infinite dimensions and for Iij of infinite range
(Iij = 1

N
I for any i, j , I > 0) [4, 13, 15] (e.g. effective long-

range Iij interaction derived from the coupling between the
wide band electrons and local pairs [1]).

The interesting problem is the competition and inter-
play between superconductivity and charge orderings (gen-
erated by density-density interaction) [17, 18, 20–24] or
magnetism [25–27, 31]. Some preliminary results of such
investigations have been presented in [4, 32–36].
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