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Abstract We study generation and dynamics of an exchange spin qubit encoded in
three coherently coupled quantum dots with three electrons. For two geometries of
the system, a linear and a triangular one, the creation and coherent control of the qubit
states are performed by the Landau–Zener transitions. In the triangular case, both the
qubit states are equivalent and can be easily generated for particular symmetries of the
system. If one of the dots is smaller than the others, one can observe Rabi oscillations
that can be used for coherent manipulation of the qubit states. The linear system is
easier to fabricate; however, then the qubit states are not equivalent, making qubit
operations more difficult to control.

Keywords Exchange qubits · Quantum computation · Landau–Zener transition ·
Quantum dots · Spin qubit dynamics

1 Introduction

Recent progress in the experimental realization of the semiconductor quantum dots
(QDs) gives the tool to perform compatible and fully scalable systems needed in the
quantum computations. In contrast to charge qubits, spin qubits are characterized by
long decoherence times necessary in the quantum computation [1]. To encode the qubit
in the single electron spin in QD, one needs to apply a magnetic field which removes
the spin degeneracy. Control of the spin qubit can be performed by the electron spin
resonance (ESR) [2,3]. The readout of the final qubit state can be done using transport
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measurements in the Pauli spin blockade regime with an auxiliary QD or with a
quantum point contact (QPC) [4].

There are proposals [5–14] to build the qubit in a two-spin system in double-
quantum dots (2QD). The qubit logical subspace is defined by a singlet (S) and one of
the triplets (T SZ ), which correspond to the north and the south pole of the Bloch sphere,
respectively. Applying an external magnetic field, one removes degeneration between
the triplets, and the information is stored in the S−T+1 subspace. The preparation and
manipulation of the qubit can be done by fast electrical pulses (in a nanosecond scale)
which change an exchange interaction between the spins [6]. The control of the qubit
is performed by the Landau–Zener (L–Z) transition [15–17] through an anticrossing
point in a non-adiabatic regime. The anticrossing comes from mixing between the
singlet and triplet states due to nuclear hyperfine fields [6–8], a spin–orbit coupling
[18], or an inhomogeneous magnetic field [12]. The mixing is needed for proper
functioning of the S − T+1 qubit; however, it can cause some unwanted decoherence
processes. The L–Z method can be used to implement the universal quantum gates
with high fidelity [19,20] and to measure the S − T+1 splitting when the spin–orbit
coupling and hyperfine interaction compete with each other [21]. The 2QD system
with two spins allows also to encode the qubit in the S − T 0 subspace [6,11–13]. In
the external magnetic field, the qubit state T 0 is the excited state; therefore, one needs
to pass through the S − T+1 anticrossing quick enough to remain in the qubit state S.
The mixing of S and T 0 states is induced in an inhomogeneous magnetic field, and
the initialization can be performed with high fidelity [13]. Moreover, both the qubit
states have SZ = 0; therefore, they are unaffected by noises in an uniform magnetic
field.

DiVincenzo et al. [22] proposed an exchange-only qubit in three-spin system in a
triple-quantum-dot (TQD) device. An advantage of the proposal is encoding the qubit
in the doublet states with the same spin z-component (SZ ). It was pointed out [23,24]
that the doublet subspace is immune to the decoherence processes. In the system,
the full unitary operations of the qubit states are done by purely electrical control of
the exchange interactions between the spins. Recently, TQD in a linear geometry has
been investigated, both theoretically [25–27] and experimentally [28–31]. Another
proposition is a resonant exchange qubit [32,33], where the manipulation is done by
applying an rf gate-voltage pulses to one of the gates. If the oscillation frequency is
matched to the exchange interaction, one can observe the nutations between the qubit
states. The DiVincenzo scheme is not limited only to the linear TQD system. Shi et
al. [34] proposed an electrically controlled hybrid qubit encoded in 2QD with many
levels and three spins.

Recent theoretical studies [35–37] showed advantages encoding of the qubit on
TQD with a triangular geometry. In this case, both the doublet states are equivalent
and can be easily controlled by changing the TQD symmetry. Single-qubit operations,
the readout and the decoherence related to external electrodes as well as leakage
processes were studied as well [37]. The triangular TQD devices were fabricated in
the three lateral quantum dots by the atomic force microscope [38–40], the electron-
beam lithography [41], and in the vertical quantum dots [42]. Similar structures can
be found in molecular magnets [43,44] which exhibit rich quantum dynamics.
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In this paper, we would like to show how one can encode the spin qubit and study
its dynamics by means of the L–Z transitions for different symmetries of the TQD
system. We model the system within the Hubbard Hamiltonian where the symmetry
is fully electrically controlled by the local gate potentials applied to the quantum dots.
Two geometries of TQD will be taken into consideration, the linear and the triangular
one, for which one expects significant differences in qubit generation and its dynamics.
The linear case is related to the experimental papers [29,30] where a qubit state was
initialized in the doublet subspace by an adiabatic passage. They observed a coherent
rotation between the qubit states when an exchange pulse applied to the system induced
the L–Z transition. We would like to extend the investigation on dynamic generation
of the qubit states and study conditions for qubit encoding. The main purpose is to
study the triangular TQD where one expects that both the qubit states can be easily
generated by the L–Z transition. We will examine different symmetries of the system
to generate any qubit state on the Bloch sphere. Next, the evolution of the qubit states
with time-dependent gate potentials will be analyzed. We expect that the qubit states
could be degenerated for a special condition (when a pseudo-magnetic field vanishes).
The L–Z passage through this point could lead to Rabi oscillations which can be used
for coherent qubit manipulations. We will show that this effect can be observed for
some special symmetry: the triangular TQD with one of the dots being smaller.

2 Model of the system

We investigate an artificial molecule built on three coherently coupled quantum dots
(TQD) which is described by the Hubbard Hamiltonian

Ĥ =
∑

i,σ

ε̃i (t) niσ +
∑

i< j,σ

ti j (c
†
iσ c jσ + h.c.)

+
∑

i

Uini↑ni↓ − gµB BZ

∑

i

SZ ,i . (1)

Here, ε̃i (t) is a time-dependent local site energy controlled by a gate potential applied
to the i-th quantum dot, ti j is a hopping parameter between the dots, Ui describes a
intra-dot Coulomb interaction. We assume that TQD is placed in an external magnetic
field BZ which splits the spin levels due to the Zeeman effect, g is the Landé g-factor
for an electron, and µB is the magnetic moment.

Confining to three electrons in the TQD system, one can construct two subspaces
of the states: quadruplets and doublets. The quadruplets are the states with the total
spin S = 3/2 and have the form

|Q+3/2〉 = | ↑1↑2↑3〉, (2)

|Q+1/2〉 = 1√
3
(| ↑1↑2↓3〉 + | ↑1↓2↑3〉 + | ↓1↑2↑3〉), (3)

for SZ = {+3/2,+1/2}, and similarly for the states with SZ = {−3/2,−1/2} [flip-
ping all spins in (2)–(3)].
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We focus on the second subspace formed by the doublets with S = 1/2 and Sz =
±1/2. For Sz = +1/2, the doublets can be expressed as:

|Ψ +1/2
D (t)〉 = αDS (t)|D+1/2

S 〉 + αDT (t)|D+1/2
T 〉

+
∑

i �= j

αi i j (t)|D+1/2
i i j 〉, (4)

where

|D+1/2
S 〉 = 1√

2
(| ↑1↑2↓3〉 − | ↓1↑2↑3〉) ≡ | ↑2〉 ⊗ |S13〉, (5)

|D+1/2
T 〉 = 1√

6
(| ↑1↑2↓3〉 + | ↓1↑2↑3〉 − 2| ↑1↓2↑3〉)

≡ 1√
3
| ↑2〉 ⊗ |T 0

13〉 −
√

2

3
| ↓2〉 ⊗ |T+1

13 〉, (6)

are the states constructed by adding an electron to the dot 2 when two other electrons
formed the singlet |S13〉 = (| ↑1↓3〉 − | ↓1↑3〉)/

√
2 and the triplets |T 0

13〉 = (| ↑1↓3〉
+ | ↓1↑3〉)/

√
2, |T+1

13 〉 = | ↑1↑3〉 on the bond 13, respectively. The states |D+1/2
S 〉

and |D+1/2
T 〉 are used to encode the qubit according to DiVincenzo et al. scheme [22].

The last term in (4), with |D+1/2
i i j 〉 = | ↑i↓i↑ j 〉, corresponds to the state with double

occupancy of one of the dots and will be used to the qubit initialization. To simplify
the notation, we omit the spin index +1/2 in the future consideration.

The model (1) neglects hyperfine interactions and a spin–orbit coupling, which
means that the doublet and quadruplet subspaces are separated. Therefore, the current
studies of qubit dynamics can be confined to the doublet subspace only. The model
can be applied to the Si-based quantum dots, the systems which are very promising in
quantum computation due to long decoherence and relaxation times which can be in
the order of a few seconds [45,46].

2.1 Qubit encoded in the doublet subspace

Let us focus on the spin qubit states |DS〉 and |DT 〉 which can be presented on the Bloch
sphere as the north and south pole, respectively. In the Hubbard model, the exchange
interactions are generated by virtual transitions to the excited double occupied states.
To see these processes, we perform the perturbative canonical transformation [47] of
the Hubbard Hamiltonian (1) to an effective Heisenberg Hamiltonian

Ĥeff = ∑
i< j Ji j

(
Si · S j − 1

4

) − gµB Bz
∑

i Sz,i , (7)

where the superexchange couplings Ji j are derived out to the second order treating
the interdot hoppings as small (ti j 	 U )
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Ji j = 2|ti j |2
(

1

Uj + ε̃ j − ε̃i
+ 1

Ui + ε̃i − ε̃ j

)
. (8)

Notice that this Hamiltonian works only for the doublets with single occupation of the
quantum dots.

The Hamiltonian of the spin qubit encoded in the doublet subspace |DS〉 and |DT 〉
can be expressed as

Ĥσ = −1

2
(3J + gµB Bz)1 + δ

2
σz + γ

2
σx , (9)

where

J = 1

3
(J12 + J23 + J31), (10)

δ = 1

2
(J12 + J23 − 2J31), (11)

γ =
√

3

2
(J12 − J23). (12)

Note that δ and γ can be interpreted as the z and x component of a pseudo-magnetic
field b = (γ, 0, δ). Eigenvalues of the Hamiltonian (9) are

E±
D = −3

2
J − gµB Bz

2
± Δ

2
, (13)

where J is the energy separation of the quadruplet and the doublet subspaces, and
Δ = √

γ 2 + δ2 is the energy gap between the doublets. For a system of Si/SiGe
quantum dots, the gap can be of the order of Δ ∼ 21.6 µeV [48]. The corresponding
eigenstates are

|D−〉 = cos φ|DS〉 + sin φ|DT 〉, (14)

|D+〉 = sin φ|DS〉 − cos φ|DT 〉, (15)

where φ = arctan(γ /(δ − Δ)) denotes the angle of the pseudo-field b with respect to
the z-axis.

In this paper, we consider two configurations of the TQD: the triangular one (see
Fig. 3), with all superexchange interactions are always on (Ji j �= 0), and the linear
one for which the outermost spins are decoupled (we take J31 = 0—see linear TQD
scheme in Fig. 1a. From Eq. (11), one can see that for the linear molecule δ = (J12 +
J32)/2 > 0; therefore, the state |DT 〉 is energetically favorable. For the symmetric
case with J12 = J23 the mixing γ = (3/2)(J12 − J23) = 0, and the field b is
oriented toward the south pole, with |DT 〉 as the ground state. For the triangular
TQD, all exchange couplings are equivalent. Therefore, by proper manipulation of the
exchange couplings, one can change the triangular symmetry and get any orientation
of the pseudo-field b on the x–z plane. This effect is used to prepare the qubit state on
the Bloch sphere in any superposition given by |D±〉.
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3 L–Z effect in the linear molecule

First we consider the dynamics in the linear TQD (see the scheme in Fig. 1a which
was studied recently by several experimental groups [29–31]. The paper [30] showed
the initialization of the qubit state by an adiabatic passage between different charge
regions. However, there was not presented how the qubit state was encoded on the
Bloch sphere. We want to expand these studies and find conditions for the generation
of the qubit states |DS〉 and |DT 〉 by means of the L–Z transition. The evolution of
the doublet state |ΨD(t)〉 (4) will be considered for different symmetries of the system
for which one can expect initialization of various qubit states on the Bloch sphere.
Let us stress that our model (1) conserves the total spin, the system remains in the

(a)

(b)

(c)

(d)

Fig. 1 Landau–Zener transitions for the linear TQD molecule with symmetric couplings t12 = t23 = −1
(left panel) and asymmetric couplings 2t12 = t23 = −1 (right panel), forUi = 11. a, c Present the adiabatic
(solid lines) and diabatic (dashed lines) evolution of energy levels with respect to the detuning parameter
Δε = ε̃1 − ε̃3. The solid red curve corresponds to the ground state energy, the solid black curve presents
the first excited doublet state, while the dashed violet line is for the quadruplet which is independent of
the detuning parameter. The charge states (N1, N2, N3) of the system are marked above the plots. Notice
that the spin qubit operates in the charge configuration (1,1,1) and is encoded in the states |DS〉 and |DT 〉
with the fidelity F = 0.95. The lower panels b, d, present the occupation probabilities of various states
as a time-dependent function (with respect to Δε = 2vt) for the rate v = 0.28 (b) and v = 0.1 (d). For
better clarity, we plotted only states with main contribution. Notice that in the symmetric case, |DS〉 is
not occupied. For the initial time Δε(tin) = −10, the system was in the ground state |D210〉 (Color figure
online)
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doublet subspace during the evolution. The advantage of this approach is to operate
in the decoherence-free subspace (DFS) [23,24].

In analogy to the experiments [29–31], we assume that applying time-dependent
local gate potentials, the site energies ε̃i of the quantum dots are changed as

ε̃1(t) = ε1 + v t,

ε̃2(t) = ε2,

ε̃3(t) = ε3 − v t, (16)

where v is a speed rate of the potential changes. Taking εi = 0, the detuning between
the levels in the outermost quantum dots is given by Δε = ε̃1(t) − ε̃3(t) = 2v t .
This allows to change the number of electrons Ni in the quantum dots and transfer
between different charge configurations (N1, N2, N3) with the total number of elec-
trons

∑
i Ni = 3. The dynamics of the system is described by the time-dependent

Schrödinger equation

i
d

dt
|ΨD(t)〉 = Ĥ |ΨD(t)〉, (17)

with the Hubbard Hamiltonian (1) and the doublet base given by (4). Eq. (17) neglects
decoherence and relaxation processes which can be caused by, e.g., a charge noise
or spin-flip processes The charge noises are related to fluctuations of a local electri-
cal potential in the quantum dot confinement and tunnel barriers. The corresponding
decoherence time can be of the order of microseconds [49]. In the system connected to
external electrodes, one can observe charge fluctuations as well as spin–flip processes
(with the relaxation time around 100 ns [37]). We show later that the Eq. (17) very
well describes dynamics of the system if the speed rate is taken reasonable large and
the time of the qubit generation is much shorter than the relaxation and decoherence
times.

We are interested in the L–Z transition between the charge configurations (2,1,0)
to (1,1,1) when the qubit states |DS〉 and |DT 〉 are generated. Since the calculations
are performed within the Hubbard model, the qubit states are not perfect, they are
always in a small superposition with the double occupation states. The accuracy of the
initialization operation of the qubit can be defined by a fidelity, which is a measure of
closeness of two quantum states and is given by F = Tr

[√
ρiρr

√
ρi

]
, where ρi is a

density matrix of a desired ideal state and ρr = |ΨD〉〈ΨD| is the real final state [50].
For a perfect qubit generation, the fidelity is unity; however, due to non-qubit states,
the fidelity is lowered. For largeUi , the separation between the double occupied states
and the qubit states is larger, and the fidelity goes to unity; however, the exchange
interactions Ji j decrease and the gap between the doublet states becomes smaller.

The results of the numerical calculations of the evolution of the doublet states and
the energy levels as a function of the detuning parameter are presented in Fig. 1 for the
linear TQD with the symmetric tunnelings between the dots t12 = t23 = −1 (the left
panel) and for the asymmetric case with 2t12 = t23 = −1 (the right panel). Figure 1a
presents the adiabatic and diabatic energy levels (full and dashed curves, respectively)
versus the detuning Δε for the symmetric case. The solid red curve describes the
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evolution of the ground state, from the state |D210〉 via |DT 〉 (in the (1,1,1) region)
to the final state |D012〉. The dashed curves correspond to the diabatic energy levels:
the blue and the red curves for |DT 〉 and |D210〉, respectively, while the black dashed
curve describes the diabatic energy level |DS〉. Notice that for the symmetric coupling
between the dots, the ground state in the region (1,1,1) is |DT 〉 and the second doublet
|DS〉 can not be generated. Optimal generation of the qubit is for the adiabatic passage
for which the fidelity F ≈ 0.95 at Δε = 0. The fidelity can be higher for larger Ui

when the occupation of the non-qubit states is negligible.
For the case presented in Fig. 1, we have the L–Z transitions in a many-level system.

The probability that the system remains at the same state can be estimated as [51,52]

PLZ =
N∏

k=1

p0k = exp

(
−2π

N∑

k=1

ΔE2
0k

4v

)
. (18)

The result is derived for N final states and under the condition that the system stays
in the state |0〉 at the final time tfin = +∞ if it has started from |0〉 at tin = −∞.
The probability p0k to remain in |0〉 after crossing with the state |k〉 is regarded as
an independent process. Here we denote ΔE0k as the gap at the anticrossing point
with the state |k〉, and h̄ = 1. Similarly, one can find the probability to generate
the system in the first state as Pgen

|1〉 = 1 − p01 and in the n-th state (n ≥ 2) as

Pgen
|n〉 = (1 − p0n)

∏n−1
k=1 p0k .

The numerical calculations of the time evolution of the occupation probabilities
of the doublet states are shown in Fig. 1b. At an initial moment Δε(tin) = −10, the
system was in the ground state |D210〉. The calculations were performed for the speed
rate v = 0.28. Notice that this speed rate is not optimal for the qubit generation and
is taken to show the dynamics in the (1,1,1) region clearly. After the crossing point
(for Δε > −U/2), one can observe the L–Z transition to the qubit state |DT 〉 with
characteristic oscillations in the occupation probabilities for |DT 〉 and |D210〉. The
period of the oscillations is inversely proportional to the energy gap. At the transition
point, the energy gap is ΔE01 ≈ 0.66 and hence one can estimate the generation
probability Pgen

DT
≈ 0.70. Notice that the second qubit state |DS〉 is not generated.

When the potential becomes larger (Δε > U/2), the system goes through the other
L–Z passage, to the charge configuration (0,1,2).

Let us estimate the sweep time t sw needed to transfer the system from the initial state
to the center of the (1,1,1) region. The hopping parameter determined in the experiment
[31] is ti j ≈ 10 µeV. The energy gap can be estimated as ΔE01 = 6.6 µeV, and the
speed rate in our calculations is v ≈ 43 keV/s. Hence the qubit is generated in the time
t sw ≈ 2.31 ns with the probability Pgen

|DT 〉 ≈ 0.70. The estimated time is much shorter
than spin-flip relaxation [37] and decoherence caused by the charge noise [49], which
means that our approximation (17) is justified.

For the asymmetric couplings between the quantum dots, which mimics the exper-
imental situation [30], one can get observe some mixing of the qubit state |DT 〉 with
|DS〉—see the right panel in Fig. 1. In the considered case, we take 2t12 = t23 = −1
and the superexchange couplings are asymmetric 4J12 = J23 = 4t2

23U/(U 2 − v2t2).
The qubit parameters are δ = 5J23/8 and γ = −3

√
3J23/8; therefore, the L–Z
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transition can generate two states |D−〉 and |D+〉 which are superpositions of |DS〉
and |DT 〉. One can see a double anticrossing in the adiabatic energy levels in Fig. 1c
between the blue–red and the blue–black curves, which correspond the L–Z transi-
tions: |D210〉 → |D−〉 and |D210〉 → |D+〉. The energy gaps at these points are
ΔE01 ≈ 0.4 and ΔE02 ≈ 0.55, respectively. For the speed rate v = 0.1, which pro-
vides the same ΔE2

01/v rate like in the previous case, one can generate these states
with the probabilities Pgen

|D−〉 ≈ 0.70 and Pgen
|D+〉 ≈ 0.259. The transition time can be

estimated as t sw ≈ 6.3 ns. The generated qubit rotates on the Bloch sphere what is
seen in Fig. 1d as strong oscillations between the states |DS〉 and |DT 〉.

Let us consider the TQD system with the central dot smaller than two oth-
ers, and the L–Z transitions between the charge configurations (1,0,2)↔(1,1,1) and
(2,0,1)↔(1,1,1). The similar passages were studies in the experiments [29–31]. For
the model (1), we take ε2 > ε1 = ε3 = 0 and U2 > U1 = U3 = U . For this case, the
symmetry is broken, and from Eq. (8), one gets asymmetric superexchange couplings
J12 �= J23 for any Δε �= 0, which leads to mixing between the qubit states |DT 〉
and |DS〉. Figure 2 presents the dynamics of the system for ε2 = 9, U2 = 24 and the
symmetric electron hopping between the dots. At an initial moment, Δε = −7.5 and
the ground state is |D201〉 with a superposition of |D210〉. Figure 2a shows the adia-
batic evolution of the energy levels which is qualitatively similar as observed in the
experiment [29]. For a given speed rate v = 0.3, the L–Z transition generates the state
|D−〉, whereas the state |D+〉 is not generated—see Fig. 2b. Notice that at Δε = 0,
there is no mixing between the qubit states (γ = 0); therefore, the occupation proba-
bility of |DS〉 decreases and goes to 0 for the adiabatic passage. Moreover, one can see
that the qubit state |D−〉 is the superposition with the states |D201〉 and |D102〉, which
also leads to a deep in the adiabatic curve E+

D (the black one in Fig. 2a). The fidelity
F ≈ 0.74 is rather low, which means that the qubit cannot be so good generated as in
the previous cases.

4 L–Z effect in the triangular molecule

Let us now consider the L–Z transitions in the TQD with the triangular geometry
(shown in Fig. 3) where the local gate electrodes control the position of the energy
levels, ε̃i = εi + eVi at each dot. Here we are interested in an influence of the
triangular symmetry on the energy structure of the qubit and its dynamics. To describe
the symmetry breaking effect in TQD, it is more convenient to introduce an effective
in-plain electric field E, instead to use the local gate potentials Vi as the parameters.
For a small value of E, the energy level of the i-th quantum dot can be expressed as

ε̃i = εi + gE cos

[
θ − (i − 1)

2π

3

]
, (19)

where gE = e|E||r1 + r2|/2 is the parameter describing electron polarization, e is the
elementary electron charge, ri—the vector showing the position of the i-th quantum
dot in the coordinate system, θ is the angle between E and the vector r1. We would
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Fig. 2 Landau–Zener
transitions for the linear
molecule with a small central
dot for the symmetric tunneling
t12 = t23 = −1. The adiabatic
evolution of the energy levels is
plotted in a as solid curves: the
ground state E−

D (red) and the

first excited state E+
D (black)

present the qubit states, the
higher energy levels (blue and
green curves) are shown for
convenience only. The
purple-dashed curve
corresponds to the energy EQ of
the quadruplets. Below b
presents the time evolution of the
probability of the doublet states
with the speed rate v = 0.3. The
other parameters are: ε2 = 9,
ε1,3 = 0, U1,3 = 11 and
U2 = 24 (Color figure online)

(a)

(b)

Fig. 3 Scheme of the TQD in
the triangular geometry in the
presence of effective electric
field caused by the potentials Vi
applied to the gate electrodes

like to study the L–Z passages generated by a time-dependent electric field described
by the parameter gE ≡ vt at a fixed angle θ .

Figure 4 shows dynamics in TQD with the triangular geometry for three different
orientations of the electric field: θ = 2π/3, θ = 5π/6, and θ = 5π/3 (in the left,
middle, and right panel, respectively). For θ = 2π/3, the electric field is toward the dot
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(a)

(b)

(c)

(d)

(e)

(f)

Fig. 4 Landau–Zener transitions in TQD with the triangular geometry for three orientations of the electric
field: θ = 2π/3 (left panel), θ = 5π/6 (middle panel) and θ = 5π/3 (right panel)—see inserts. The energy
spectrum is presented in the top panels where the dashed and the solid curves correspond to the diabatic
and the adiabatic passages, respectively. In the adiabatic regime, the fidelity F ≈ 0.95. Bottom panels show
the time evolution of the occupation probabilities of the doublet states, where gE = vt . In calculations, we
take: U = 11, ti j = −1, εi = 0. Plots are taken for the same ΔE2

01/v rate as in Fig. 1: b ΔE01 ≈ 2.3 and
v = 2.2; d ΔE01 ≈ 2.28 and v = 3.48; f ΔE01 ≈ 3.47 and v = 5.01

2, and at the initial time, the electron polarization parameter is gE (tin) = −15 for which
the dot levels are ε̃2 +U2 < ε̃1 = ε̃3. The ground state |ψin〉 = (|D021〉+ |D120〉)/

√
2

is a superposition of the charge configuration (0,2,1) and (1,2,0) (with an equal charge
redistribution between the dot 1 and 3). In Fig. 4a, one can see the anticrossing point
between the adiabatic energy levels (the red and blue solid curves) corresponding to the
L–Z transition to the region (1,1,1) with the ground state |D−〉 = |DS〉. The energy gap
at the anticrossing point is ΔE01 ≈ 2.3, and for the speed rate v = 2.2, the state |DS〉
is generated with the probability Pgen

|DS〉 ≈ 0.85—see Fig. 4b. The energy gap is larger
than in the linear case, because all three hopping parameters ti j are always on. Notice
that for this orientation of the field, the qubit state |DT 〉 is not generated, because
the transfer matrix element 〈ψin|Ĥ |DT 〉 = √

3(t23 − t12)/2 = 0, this state is dark
[36,37]. For the qubit state |DS〉, one can found 〈ψin|Ĥ |DS〉 = (t23 + t12)/2 = −1
for ti j = −1. In Fig. 4a, one can see also the crossing between the state |DS〉 and |DT 〉
at gE = 0 after which the ground state becomes |DT 〉. However, there is no mixing
between |DS〉 and |DT 〉, the parameter γ = 0 in the qubit Hamiltonian (9), and hence
the system is held in |DS〉 in whole range of the charge state (1,1,1). Similarly, as for
the linear case, we can estimate the time for qubit generation. Taking ti j = 10 µeV
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Fig. 5 Landau–Zener
transitions in TQD with the
triangular geometry and the
second dot being smaller. The
electric field is directed toward
the dot 1 (the angle θ = 0).
Figure is plotted for parameters:
ε2 = 4, U2 = 24, U1,3 = 11,
ε1,3 = 0, and ti j = −1. a
Presents the energy spectrum for
the adiabatic passage, while b
the probability of occupations of
the doublet states with respect to
gE = vt . The speed rate was
taken v = 0.01 to clearly show
generation of the qubit states and
the Rabi oscillations

(a)

(b)

from the experiment [31], one gets ΔE01 = 23 µeV, v = 332.7 keV/s, and hence the
transition time t sw = 0.45 ns.

The situation is different in the right panel of Fig. 4 when the electric field has
opposite orientation. Now at the initial condition for gE = −15, the dot levels are
ε̃2 > ε̃1 + U1 = ε̃3 + U3 and the ground state is |ψin〉 = (|D102〉−|D201〉)/

√
2. One

can see the initial charge distribution of the function is different than in previous case—
the dot 2 is empty. The transfer matrix elements are 〈ψin|Ĥ |DT 〉 = √

3(t23 + t12)/2 =
−√

3 and 〈ψin|Ĥ |DS〉 = (t23 − t12)/2 = 0 for ti j = −1. In this case, |DS〉 is the dark
state and the L–Z transition generates the qubit state |DT 〉 (see Fig. 4f). The energy
gap is now E01 ≈ 3.47. We take v = 5.01 to get the same ΔE2

01/v rate with the
generated probability Pgen

|DT 〉 ≈ 0.85. The qubit state is generated in time t sw = 0.19
ns. The period of observed oscillations is larger than for the case θ = 2π/3 because
the gap is larger. Similarly, like in previous case, one can see the crossing between
|DT 〉 and |DS〉 at gE = 0 but now the generated qubit state |DT 〉 is kept in whole
charge region (1,1,1). We will show latter how to remove this degeneration point and
to perform the L–Z passage between the qubit states.

In the middle panel in Fig. 4, we present an intermediate case for θ = 5π/6. Now
the parameter γ is nonzero for the whole range of gE (except gE = 0), which leads to
mixing between the doublets |DS〉 and |DT 〉. The L–Z transition generates the state
|D−〉 from the initial state |D021〉, with Pgen

|D−〉 ≈ 0.85 in time t sw = 0.46 ns. The
occupation probabilities of |DS〉 and |DT 〉 oscillate in phase, see the black and the red
curve in Fig. 4d. There is no passage to the excited state |D+〉 because it is decoupled
with the initial state |D021〉. These results show that generation of the qubit state |D−〉
on the Bloch sphere can be performed by an appropriate orientation of the electric
field.
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Let us now consider the case with one of the dots smaller than two others. We expect
that the symmetry of the system will be broken, the degeneracy of the doublet states
|D−〉 and |D+〉 will be removed and one can perform the L–Z passage in the center
of the charge region (1,1,1). In calculations, we took ε2 = 4, ε1,3 = 0, U2 = 24,
U1,3 = 11, and θ = 0. In Fig. 5a, one can see the adiabatic levels |D−〉 and |D+〉 in
the region (1,1,1) and an anticrossing point at gE ≈ 2. Before this point, for gE < 2,
the system is in the ground state |D−〉 which is a superposition |DT 〉 with a small
contribution |DS〉; the qubit is oriented to the south pole on the Bloch sphere. For an
adiabatic passage, above gE > 2, the qubit changes its orientation toward the north
pole (|DS〉 becomes dominating). The results presented in Fig. 5b were calculated
for the L–Z transition with the speed rate v = 0.01. One can see generations of the
excited state |D+〉 and the Rabi oscillations (oscillations between |DT 〉 and |DS〉. After
anticrossing, the fidelity for |DS〉 is F ≈ 0.93. This effect can be used to dynamic
control the qubit states and to perform quantum operations [30]. Plots in Fig. 5b show
also two other L–Z transitions: at gE ≈ 7.5 and gE ≈ 18 where the states |D012〉
and |D021〉 are generated, respectively. Notice that |DT 〉 is kept till the transition at
gE ≈ 18.

5 Conclusions

Summarizing, we considered the system of three coherently coupled quantum dots
(TQD) in the linear and the triangular geometry, for which quantum dot levels were
controlled by the local gate potentials. Applying electrical pulses, the Landau–Zener
transitions were generated between different charge configurations (N1, N2, N3) of
the system. The spin qubit states were encoded in the doublet subspace |DS〉 and |DT 〉
in the charge region (1,1,1), and they were generated from the initial charge states
with double dot occupancy (e.g., from (2, 1, 0)).

Our research on the linear TQD expands the investigations presented in [29–31]. We
showed that in this case, the state |DT 〉 is preferred, the generated qubit is restricted
to the south part of the Bloch sphere only. For Si-based quantum dots [45,49], the
estimated sweep time t sw for the generation of the qubit is of the order of a few
nanoseconds which is much shorter than both the decoherence and relaxation time.
We also considered the system with one of the dots smaller than two others. The qubit
states cannot be well generated, then the fidelity is rather low, and the final state always
contains a large superposition of non-qubit states for any speed rate.

In the triangular geometry, both the qubit states are equivalent and can be easily gen-
erated by the L–Z transitions for the mirror symmetries. The symmetry was changed
by a rotation of the effective electric field (controlled by the local gate potentials
applied to the quantum dots). If the electric field is oriented toward the second quan-
tum dot, then the L–Z transition generates the qubit state |DS〉 from the initial state
|ψin〉 = (|D021〉+|D120〉)/

√
2. For the opposite direction of the electric field, the sec-

ond qubit state |DT 〉 is obtained from the initial state |ψin〉 = (|D102〉 − |D201〉)/
√

2.
The L–Z transition induces characteristic oscillations between the initial and the qubit
state with the amplitude related to the speed rate v. For small v, these oscillations can
be suppressed and the qubit is generated with a higher fidelity. The energy gaps are
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larger than in the linear molecule which allows faster generation of the qubit states
(with t sw ≈ 0.1 ns). We also showed that one can get any qubit state on the Bloch
sphere by a proper orientation of the electric field. The interested case is the triangular
TQD with one of the dots smaller for which an additional anticrossing point between
the qubit states occurs. We showed that the L–Z passage through this point generates
the Rabi oscillations. This effect can be used to perform one-qubit operations. Apply-
ing a proper sequence of electrical pulses, one can perform the Pauli X and Z gate
which give full unitary control of the qubit rotation on the Bloch sphere [37].

Our calculations showed that the dynamics of the qubit should be observable in
an experiment on Si-based quantum dots even in the presence of the decoherence
processes for reasonable transition speeds.

The triangular TQD system can be used for construction of a multi-qubit quantum
register with fast quantum logical operations. Changing the symmetry of each qubit,
one can easily encode a desire initial state in the register. For the linear TQD, the
encoding operation is more complex, because one should perform an additional single-
qubit gate in order to rotate the qubit states, which significantly increases the operation
time.
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