339 research outputs found
Closed-Form Bayesian Inferences for the Logit Model via Polynomial Expansions
Articles in Marketing and choice literatures have demonstrated the need for
incorporating person-level heterogeneity into behavioral models (e.g., logit
models for multiple binary outcomes as studied here). However, the logit
likelihood extended with a population distribution of heterogeneity doesn't
yield closed-form inferences, and therefore numerical integration techniques
are relied upon (e.g., MCMC methods).
We present here an alternative, closed-form Bayesian inferences for the logit
model, which we obtain by approximating the logit likelihood via a polynomial
expansion, and then positing a distribution of heterogeneity from a flexible
family that is now conjugate and integrable. For problems where the response
coefficients are independent, choosing the Gamma distribution leads to rapidly
convergent closed-form expansions; if there are correlations among the
coefficients one can still obtain rapidly convergent closed-form expansions by
positing a distribution of heterogeneity from a Multivariate Gamma
distribution. The solution then comes from the moment generating function of
the Multivariate Gamma distribution or in general from the multivariate
heterogeneity distribution assumed.
Closed-form Bayesian inferences, derivatives (useful for elasticity
calculations), population distribution parameter estimates (useful for
summarization) and starting values (useful for complicated algorithms) are
hence directly available. Two simulation studies demonstrate the efficacy of
our approach.Comment: 30 pages, 2 figures, corrected some typos. Appears in Quantitative
Marketing and Economics vol 4 (2006), no. 2, 173--20
Interdependent Infrastructure as Linked Social, Ecological, and Technological Systems (SETSs) to Address Lockâin and Enhance Resilience
Traditional infrastructure adaptation to extreme weather events (and now climate change) has typically been technoâcentric and heavily grounded in robustnessâthe capacity to prevent or minimize disruptions via a riskâbased approach that emphasizes control, armoring, and strengthening (e.g., raising the height of levees). However, climate and nonclimate challenges facing infrastructure are not purely technological. Ecological and social systems also warrant consideration to manage issues of overconfidence, inflexibility, interdependence, and resource utilizationâamong others. As a result, technoâcentric adaptation strategies can result in unwanted tradeoffs, unintended consequences, and underaddressed vulnerabilities. Technoâcentric strategies that lockâin today\u27s infrastructure systems to vulnerable future design, management, and regulatory practices may be particularly problematic by exacerbating these ecological and social issues rather than ameliorating them. Given these challenges, we develop a conceptual model and infrastructure adaptation case studies to argue the following: (1) infrastructure systems are not simply technological and should be understood as complex and interconnected social, ecological, and technological systems (SETSs); (2) infrastructure challenges, like lockâin, stem from SETS interactions that are often overlooked and underappreciated; (3) framing infrastructure with a SETS lens can help identify and prevent maladaptive issues like lockâin; and (4) a SETS lens can also highlight effective infrastructure adaptation strategies that may not traditionally be considered. Ultimately, we find that treating infrastructure as SETS shows promise for increasing the adaptive capacity of infrastructure systems by highlighting how lockâin and vulnerabilities evolve and how multidisciplinary strategies can be deployed to address these challenges by broadening the options for adaptation
Recommended from our members
A practitioner's guide to Bayesian estimation of discrete choice dynamic programming models
This paper provides a step-by-step guide to estimating infinite horizon discrete choice dynamic programming (DDP) models using a new Bayesian estimation algorithm (Imai et al., Econometrica 77:1865â1899, 2009a) (IJC). In the conventional nested fixed point algorithm, most of the information obtained in the past iterations remains unused in the current iteration. In contrast, the IJC algorithm extensively uses the computational results obtained from the past iterations to help solve the DDP model at the current iterated parameter values. Consequently, it has the potential to significantly alleviate the computational burden of estimating DDP models. To illustrate this new estimation method, we use a simple dynamic store choice model where stores offer âfrequent-buyerâ type rewards programs. Our Monte Carlo results demonstrate that the IJC method is able to recover the true parameter values of this model quite precisely. We also show that the IJC method could reduce the estimation time significantly when estimating DDP models with unobserved heterogeneity, especially when the discount factor is close to 1
Role of retinoic receptors in lung carcinogenesis
Several in vitro and in vivo studies have examined the positive and negative effects of retinoids (vitamin A analogs) in premalignant and malignant lesions. Retinoids have been used as chemopreventive and anticancer agents because of their pleiotropic regulator function in cell differentiation, growth, proliferation and apoptosis through interaction with two types of nuclear receptors: retinoic acid receptors and retinoid X receptors. Recent investigations have gradually elucidated the function of retinoids and their signaling pathways and may explain the failure of earlier chemopreventive studies
A Survey of Bayesian Statistical Approaches for Big Data
The modern era is characterised as an era of information or Big Data. This
has motivated a huge literature on new methods for extracting information and
insights from these data. A natural question is how these approaches differ
from those that were available prior to the advent of Big Data. We present a
review of published studies that present Bayesian statistical approaches
specifically for Big Data and discuss the reported and perceived benefits of
these approaches. We conclude by addressing the question of whether focusing
only on improving computational algorithms and infrastructure will be enough to
face the challenges of Big Data
Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches
Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly
Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches
Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its âMinimal Information for Studies of Extracellular Vesiclesâ, which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly
- âŠ