16,260 research outputs found

    Chiral geometry of higher excited bands in triaxial nuclei with particle-hole configuration

    Full text link
    The lowest six rotational bands have been studied in the particle-rotor model with the particle-hole configuration πh11/21⊗νh11/2−1\pi h^1_{11/2}\otimes\nu h^{-1}_{11/2} and different triaxiality parameter γ\gamma. Both constant and spin-dependent variable moments of inertial (CMI and VMI) are introduced. The energy spectra, electromagnetic transition probabilities, angular momentum components and KK-distribution have been examined. It is shown that, besides the band 1 and band 2, the predicted band 3 and band 4 in the calculations of both CMI and VMI for atomic nuclei with γ=30∘\gamma=30^\circ could be interpreted as chiral doublet bands.Comment: 4 pages, 4 figure

    Influence of low-level Pr substitution on the superconducting properties of YBa2Cu3O7-delta single crystals

    Full text link
    We report on measurements on Y1-xPrxBa2Cu3O7-delta single crystals, with x varying from 0 to 2.4%. The upper and the lower critical fields, Hc2 and Hc1, the Ginzburg-Landau parameter and the critical current density, Jc(B), were determined from magnetization measurements and the effective media approach scaling method. We present the influence of Pr substitution on the pinning force density as well as on the trapped field profiles analyzed by Hall probe scanning.Comment: 4 pages, 5 figures, accepted for publication in J. Phys. Conf. Se

    Candidate MKiD nucleus 106Rh in triaxial relativistic mean-field approach with time-odd fields

    Full text link
    The configuration-fixed constrained triaxial relativistic mean-field approach is extended by including time-odd fields and applied to study the candidate multiple chiral doublets (MKiD) nucleus 106Rh. The energy contribution from time-odd fields and microscopical evaluation of center-of-mass correction as well as the modification of triaxial deformation parameters beta, gamma due to the time-odd fields are investigated. The contributions of the time-odd fields to the total energy are 0.1-0.3 MeV and they modify slightly the gamma values. However, the previously predicted multiple chiral doublets still exist.Comment: 9 pages, 3 figures, accepted for publication as a Brief Report in Physical Review

    Keeping you in the loop: enabling web-based things management in the internet of things

    Get PDF
    Internet of Things (IoT) is an emerging paradigm where physical objects are connected and communicated over the Web. Its capability in assimilating the virtual world and the physical one offers many exciting opportunities. However, how to realize a smooth, seamless integration of the two worlds remains an interesting and challenging topic. In this paper, we showcase an IoT prototype system that enables seamless integration of the virtual and the physical worlds and efficient management of things of interest (TOIs), where services and resources offered by things can be easily monitored, visualized, and aggregated for value-added services by users. This paper presents the motivation, system design, implementation, and demonstration scenario of the system.Lina Yao, Quan Z. Sheng, Anne H.H. Ngu and Byron Ga

    Higher-order temporal network effects through triplet evolution

    Get PDF
    We study the evolution of networks through ‘triplets’ — three-node graphlets. We develop a method to compute a transition matrix to describe the evolution of triplets in temporal networks. To identify the importance of higher-order interactions in the evolution of networks, we compare both artificial and real-world data to a model based on pairwise interactions only. The significant differences between the computed matrix and the calculated matrix from the fitted parameters demonstrate that non-pairwise interactions exist for various real-world systems in space and time, such as our data sets. Furthermore, this also reveals that different patterns of higher-order interaction are involved in different real-world situations. To test our approach, we then use these transition matrices as the basis of a link prediction algorithm. We investigate our algorithm’s performance on four temporal networks, comparing our approach against ten other link prediction methods. Our results show that higher-order interactions in both space and time play a crucial role in the evolution of networks as we find our method, along with two other methods based on non-local interactions, give the best overall performance. The results also confirm the concept that the higher-order interaction patterns, i.e., triplet dynamics, can help us understand and predict the evolution of different real-world systems

    Observation of indirect ionization of W7+ in an electron-beam ion-trap plasma

    Full text link
    In this work, visible and extreme ultraviolet spectra of W7+ are measured using the high-temperature superconducting electron-beam ion trap (EBIT) at the Shanghai EBIT Laboratory under extremely low-energy conditions (lower than the nominal electron-beam energy of 130 eV). The relevant atomic structure is calculated using the flexible atomic code package based on the relativistic configuration interaction method. The GRASP2K code, in the framework of the multiconfiguration Dirac-Hartree-Fock method, is employed as well for calculating the wavelength of the M1 transition in the ground configuration of W7+. A line from the W7+ ions is observed at a little higher electron-beam energy than the ionization potential for W4+, making this line appear to be from W5+. A hypothesis for the charge-state evolution of W7+ is proposed based on our experimental and theoretical results; that is, the occurrence of W7+ ions results from indirect ionization caused by stepwise excitation between some metastable states of lower-charge-state W ions, at the nominal electron-beam energy of 59 eV

    Development of a composite regional vulnerability index and its relationship with the impacts of the COVID‑19 pandemic

    Get PDF
    The interactions between vulnerability and human activities have largely been regarded in terms of the level of risk they pose, both internally and externally, for certain groups of disadvantaged individuals and regions/areas. However, to date, very few studies have attempted to develop a comprehensive composite regional vulnerability index, in relation to travel, housing, and social deprivation, which can be used to measure vulnerability at an aggregated level in the social sciences. Therefore, this research aims to develop a composite regional vulnerability index with which to examine the combined issues of travel, housing and socio-economic vulnerability (THASV index). It also explores the index’s relationship with the impacts of the COVID-19 pandemic, reflecting both social and spatial inequality, using Greater London as a case study, with data analysed at the level of Middle Layer Super Output Areas (MSOAs). The findings show that most of the areas with high levels of composite vulnerability are distributed in Outer London, particularly in suburban areas. In addition, it is also found that there is a spatial correlation between the THASV index and the risk of COVID-19 deaths, which further exacerbates the potential implications of social deprivation and spatial inequality. Moreover, the results of the multiscale geographically weighted regression (MGWR) show that the travel and socio-economic indicators in a neighbouring district and the related vulnerability indices are strongly associated with the risk of dying from COVID-19. In terms of policy implications, the findings can be used to inform sustainable city planning and urban development strategies designed to resolve urban socio-spatial inequalities and the potential related impacts of COVID-19, as well as guiding future policy evaluation of urban structural patterns in relation to vulnerable areas
    • …
    corecore