11 research outputs found

    Innovative potential of the European Union’s member states in 2017

    Get PDF
    Purpose: The aim of this paper is to evaluate the innovative potential of the European Union’s countries in 2017. Design/Methodology/Approach: The authors have proposed their methodology of measuring the innovative potential of the EU Member States. Technique for Order Preference by Similarity to the Ideal Solution (TOPSIS) was used to rank and evaluate countries’ ability to innovate with respect to internal sources of innovativeness. Findings: The analysis confirms moderate innovative capacity of the EU countries. The classification of countries on the account of their innovative potential in 2017 reveals some similarities to ranking of Global Innovation Index (Input Sub-Index). Practical Implications: The paper proves that the most innovative countries in the light of the European Innovation Scoreboard display the highest ability to innovate. Therefore, internal resources of financial and human character were found to influence the overall level of innovativeness of member states. European countries should benefit from developing their innovative potential in terms of national resources. Originality/Value: Most researchers adopt input and output approach to innovativeness because it represents a sophisticated phenomenon. Due to shortage of studies measuring solely the innovative potential of economies, the paper will contribute to the development of literature.peer-reviewe

    Enhancing mobile aerosol monitoring with CE376 dual-wavelength depolarization lidar

    Get PDF
    We present the capabilities of a compact dual-wavelength depolarization lidar to assess the spatiotemporal variations in aerosol properties aboard moving vectors. Our approach involves coupling the lightweight Cimel CE376 lidar, which provides measurements at 532 and 808 nm and depolarization at 532 nm, with a photometer to monitor aerosol properties. The assessments, both algorithmic and instrumental, were conducted at ATOLL (ATmospheric Observatory of LiLle) platform operated by the Laboratoire d'Optique Atmosphérique (LOA), in Lille, France. An early version of the CE376 lidar co-located with the CE318-T photometer and with a multi-wavelength Raman lidar were considered for comparisons and validation. We developed a modified Klett inversion method for simultaneous two-wavelength elastic lidar and photometer measurements. Using this setup, we characterized aerosols during two distinct events of Saharan dust and dust smoke aerosols transported over Lille in spring 2021 and summer 2022. For validation purposes, comparisons against the Raman lidar were performed, demonstrating good agreement in aerosol properties with relative differences of up to 12 % in the depolarization measurements. Moreover, a first dataset of CE376 lidar and photometer performing on-road measurements was obtained during the FIREX-AQ (Fire Influence on Regional to Global Environments and Air Quality) field campaign deployed in summer 2019 over the northwestern USA. By lidar and photometer mapping in 3D, we investigated the transport of released smoke from active fire spots at William Flats (northeast WA, USA). Despite extreme environmental conditions, our study enabled the investigation of aerosol optical properties near the fire source, distinguishing the influence of diffuse, convective, and residual smoke. Backscatter, extinction profiles, and column-integrated lidar ratios at 532 and 808 nm were derived for a quality-assured dataset. Additionally, the extinction Ångström exponent (EAE), color ratio (CR), attenuated color ratio (ACR), and particle linear depolarization ratio (PLDR) were derived. In this study, we discuss the capabilities (and limitations) of the CE376 lidar in bridging observational gaps in aerosol monitoring, providing valuable insights for future research in this field.</p

    The designing and construction of send-receive coils to magnethical resonance displaying in the field with induction 0.088 T

    No full text
    Rozwój obrazowania magnetyczno-rezonansowego (OMR) skupia się na zastosowaniu wysokopolowych systemów OMR, jednak w wielu przypadkach diagnostyka medyczna w niskim polu magnetycznym umożliwia uzyskanie porównywalnych rezultatów. Zastosowanie tego typu systemów wymaga użycia dedykowanych cewek wysokiej częstości (w.cz.) w celu uzyskania maksymalnego stosunku sygnału do szumu (SNR). Wykorzystując m.in. analizy numeryczne, zaprojektowano oraz skonstruowano objętościowe, a także powierzchniowe cewkiw.cz., których przydatność do OMR została określona przy pomocy pomiarów testowych oraz obrazów MR uzyskanych dla fantomów. Przeprowadzone eksperymenty wykazały możliwość zastosowania cewek innych typów niż cewki solenoidalne, stosowane dotychczas do obrazowania w bardzo niskim polu magnetycznym.Recent advancements in magnetic resonance imaging (MRI) are mostly directed towards high-field imaging hardware, rapid pulse sequences and multiple channel phased array coils. Nonetheless, for many diagnostic tests performed using MRI, low-field scanners also provide sufficient quality of images. Using these types of systems requires special dedicated radiofrequency coils (RF coils) in order to achieve the highest possible signal to noise ratio (SNR) for a given magnetic field strength. This work describes the process of designing and constructing transceiver RF coils for a 0,088 T MRI system. Two volume and two surface coils were built and their performance was tested on the bench and through comparing the simulated magnetic field created by each coil with experimentally collected results from phantom MR images. Experiment proved that it is possible to use successfully different RF coils, than the most frequently used solenoid design for MRI at 0,088 T

    Alterations in NO- and PGI2- dependent function in aorta in the orthotopic murine model of metastatic 4T1 breast cancer: relationship with pulmonary endothelial dysfunction and systemic inflammation

    No full text
    Abstract Background Patients with cancer develop endothelial dysfunction and subsequently display a higher risk of cardiovascular events. The aim of the present work was to examine changes in nitric oxide (NO)- and prostacyclin (PGI2)-dependent endothelial function in the systemic conduit artery (aorta), in relation to the formation of lung metastases and to local and systemic inflammation in a murine orthotopic model of metastatic breast cancer. Methods BALB/c female mice were orthotopically inoculated with 4T1 breast cancer cells. Development of lung metastases, lung inflammation, changes in blood count, systemic inflammatory response (e.g. SAA, SAP and IL-6), as well as changes in NO- and PGI2-dependent endothelial function in the aorta, were examined 2, 4, 5 and 6 weeks following cancer cell transplantation. Results As early as 2 weeks following transplantation of breast cancer cells, in the early metastatic stage, lungs displayed histopathological signs of inflammation, NO production was impaired and nitrosylhemoglobin concentration in plasma was decreased. After 4 to 6 weeks, along with metastatic development, progressive leukocytosis and systemic inflammation (as seen through increased SAA, SAP, haptoglobin and IL-6 plasma concentrations) were observed. Six weeks following cancer cell inoculation, but not earlier, endothelial dysfunction in aorta was detected; this involved a decrease in basal NO production and a decrease in NO-dependent vasodilatation, that was associated with a compensatory increase in cyclooxygenase-2 (COX-2)- derived PGI2 production. Conclusions In 4 T1 metastatic breast cancer in mice early pulmonary metastasis was correlated with lung inflammation, with an early decrease in pulmonary as well as systemic NO availability. Late metastasis was associated with robust, cancer-related, systemic inflammation and impairment of NO-dependent endothelial function in the aorta that was associated with compensatory upregulation of the COX-2-derived PGI2 pathway

    Vitamin K2MK7K_{2}-MK-7 improves nitric oxide-dependent endothelial function in ApoE/LDLR/ApoE/LDLR^{−/−} mice

    No full text
    Although, vitamin K2 displays vasoprotective effects, it is still not known whether K2 treatment improves endothelial function. In ApoE/LDLR−/− mice at the stage prior to atherosclerosis development, four-week treatment with K2-MK-7, given at a low dose (0.05 mg/kg), improved acetylcholine- and flow-induced, endothelium-dependent vasodilation in aorta or in femoral artery, as assessed by MRI in vivo. This effect was associated with an increased NO production, as evidenced by EPR measurements in ex vivo aorta. Treatment with higher doses of K2-MK-7 (0.5; 5 mg/kg) resulted in a dose-dependent increase in plasma K2-MK-7 and K2-MK-4 concentration, without further improvement in endothelial function. In ApoE/LDLR−/− mice with developed atherosclerotic plaques, treatment with a low (0.03 mg/kg) or high (10 mg/kg) dose of K2-MK-7 resulted in a similar degree of endothelium-dependent vasodilation improvement and increase in plasma nitrate concentration, what was not associated with changes in thrombin generation as measured by CAT. Both doses of K2-MK-7 also reduced media thickness in the brachiocephalic artery, but did not modify atherosclerotic plaque size. In conclusion, K2-MK-7 improves NO-dependent endothelial function in ApoE/LDLR−/− mice. This study, identifies the endothelial profile of the pharmacological activity of vitamin K2, which has not been previously described

    Thrombin inhibition prevents endothelial dysfunction and reverses 20-HETE overproduction without affecting blood pressure in angiotensin II-induced hypertension in mice

    Get PDF
    Angiotensin II (Ang II) induces hypertension and endothelial dysfunction, but the involvement of thrombin in these responses is not clear. Here, we assessed the effects of the inhibition of thrombin activity by dabigatran on Ang II-induced hypertension and endothelial dysfunction in mice with a particular focus on NO- and 20-HETE-dependent pathways. As expected, dabigatran administration significantly delayed thrombin generation (CAT assay) in Ang II-treated hypertensive mice, and interestingly, it prevented endothelial dysfunction development, but it did not affect elevated blood pressure nor excessive aortic wall thickening. Dabigatran’s effects on endothelial function in Ang II-treated mice were evidenced by improved NO-dependent relaxation in the aorta in response to acetylcholine in vivo (MRI measurements) and increased systemic NO bioavailability (NO2− quantification) with a concomitant increased ex vivo production of endothelium-derived NO (EPR analysis). Dabigatran treatment also contributed to the reduction in the endothelial expression of pro-inflammatory vWF and ICAM-1. Interestingly, the fall in systemic NO bioavailability in Ang II-treated mice was associated with increased 20-HETE concentration in plasma (UPLC-MS/MS analysis), which was normalised by dabigatran treatment. Taking together, the inhibition of thrombin activity in Ang II-induced hypertension in mice improves the NO-dependent function of vascular endothelium and normalises the 20-HETE-depedent pathway without affecting the blood pressure and vascular remodelling
    corecore