57 research outputs found

    Microscope with extended field of vision

    Get PDF
    An optical system is provided for creating a mosaic image of a large field of view through a microscope at fast refresh rates of about 25 Hz with a high resolution that is free of blurring or aberrations. The optical system includes an objective lens assembly ( 20 ), an iris ( 30 ), one or more scanning mirrors ( 40 ) for high-speed scanning, one or more imaging lenses and irises ( 50, 60, 80 ), and a high-speed imaging device ( 70 ) arranged in that order from an object. The optical system also includes a mechanism for processing and constructing scanned and captured images into a mosaic image

    Wideband Electrically Pumped 1050-nm MEMS-Tunable VCSEL for Ophthalmic Imaging

    Get PDF
    In this paper, we present a 1050-nm electrically pumped microelectromechanically tunable vertical cavity surface-emitting laser (MEMS-VCSEL) with a record dynamic tuning bandwidth of 63.8 nm, suitable for swept-source optical coherence tomography (SS-OCT) imaging. These devices provide reduced cost and complexity relative to previously demonstrated optically pumped devices by obviating the need for a pump laser and associated hardware. We demonstrate ophthalmic SS-OCT imaging with the electrically-pumped MEMS-VCSEL at a 400 kHz axial scan rate for wide-field imaging of the in vivo human retina over a 12 mm × 12 mm field and for OCT angiography of the macula over 6 mm × 6 mm and 3 mm × 3 mm fields to show retinal vasculature and capillary structure near the fovea. These results demonstrate the feasibility of electrically pumped MEMS-VCSELs in ophthalmic instrumentation, the largest clinical application of OCT. In addition, we estimate that the 3 dB coherence length in air is 225 ± 51 m, far greater than required for ophthalmic SS-OCT and suggestive of other distance ranging applications.National Eye InstituteNational Institutes of Health (U.S.) (Grant R01-EY011289-28)National Institutes of Health (U.S.) (Grant R44-EY022864-02)National Institutes of Health (U.S.) (Grant R44-EY022864-03)National Institutes of Health (U.S.) (Grant R01-CA075289-17)United States. Air Force Office of Scientific Research (FA9550-10-1-0551)United States. Air Force Office of Scientific Research (FA9550-12-1-0499

    Recent advances in MEMS-VCSELs for high performance structural and functional SS-OCT imaging

    Get PDF
    Since the first demonstration of swept source optical coherence tomography (SS-OCT) imaging using widely tunable micro-electromechanical systems vertical cavity surface-emitting lasers (MEMS-VCSELs) in 2011, VCSEL-based SSOCT has advanced in both device and system performance. These advances include extension of MEMS-VCSEL center wavelength to both 1060nm and 1300nm, improved tuning range and tuning speed, new SS-OCT imaging modes, and demonstration of the first electrically pumped devices. Optically pumped devices have demonstrated continuous singlemode tuning range of 150nm at 1300nm and 122nm at 1060nm, representing a fractional tuning range of 11.5%, which is nearly a factor of 3 greater than the best reported MEMS-VCSEL tuning ranges prior to 2011. These tuning ranges have also been achieved with wavelength modulation rates of >500kHz, enabling >1 MHz axial scan rates. In addition, recent electrically pumped devices have exhibited 48.5nm continuous tuning range around 1060nm with 890kHz axial scan rate, representing a factor of two increase in tuning over previously reported electrically pumped MEMS-VCSELs in this wavelength range. New imaging modes enabled by optically pumped devices at 1060nm and 1300nm include full eye length imaging, pulsatile Doppler blood flow imaging, high-speed endoscopic imaging, and hand-held wide-field retinal imaging.National Institutes of Health (U.S.) (Grant R44EY022864-01)National Institutes of Health (U.S.) (Grant R44EY022864-02)National Institutes of Health (U.S.) (Grant R44CA101067-05)National Institutes of Health (U.S.) (Grant R44CA101067-06)National Institutes of Health (U.S.) (Grant R44CA101067-07)National Institutes of Health (U.S.) (Grant R01-EY011289-26)National Institutes of Health (U.S.) (Grant R01-CA075289-15)National Institutes of Health (U.S.) (Grant R01-EY013178-12)National Institutes of Health (U.S.) (Grant R01-EY013516-09)National Institutes of Health (U.S.) (Grant R01-EY018184-05)National Institutes of Health (U.S.) (Grant R01-NS057476-05)United States. Air Force Office of Scientific Research (Grant FA9550-10-1-0551)United States. Air Force Office of Scientific Research (Grant FA9550-12-1-0499)Thorlabs, Inc

    Triggered optical coherence tomography for capturing rapid periodic motion

    Get PDF
    Quantitative cross-sectional imaging of vocal folds during phonation is potentially useful for diagnosis and treatments of laryngeal disorders. Optical coherence tomography (OCT) is a powerful technique, but its relatively low frame rates makes it challenging to visualize rapidly vibrating tissues. Here, we demonstrate a novel method based on triggered laser scanning to capture 4-dimensional (4D) images of samples in motu at audio frequencies over 100 Hz. As proof-of-concept experiments, we applied this technique to imaging the oscillations of biopolymer gels on acoustic vibrators and aerodynamically driven vibrations of the vocal fold in an ex vivo calf larynx model. Our results suggest that triggered 4D OCT may be useful in understanding and assessing the function of vocal folds and developing novel treatments in research and clinical settings

    Choriocapillaris and Choroidal Microvasculature Imaging with Ultrahigh Speed OCT Angiography

    Get PDF
    We demonstrate in vivo choriocapillaris and choroidal microvasculature imaging in normal human subjects using optical coherence tomography (OCT). An ultrahigh speed swept source OCT prototype at 1060 nm wavelengths with a 400 kHz A-scan rate is developed for three-dimensional ultrahigh speed imaging of the posterior eye. OCT angiography is used to image three-dimensional vascular structure without the need for exogenous fluorophores by detecting erythrocyte motion contrast between OCT intensity cross-sectional images acquired rapidly and repeatedly from the same location on the retina. En face OCT angiograms of the choriocapillaris and choroidal vasculature are visualized by acquiring cross-sectional OCT angiograms volumetrically via raster scanning and segmenting the three-dimensional angiographic data at multiple depths below the retinal pigment epithelium (RPE). Fine microvasculature of the choriocapillaris, as well as tightly packed networks of feeding arterioles and draining venules, can be visualized at different en face depths. Panoramic ultra-wide field stitched OCT angiograms of the choriocapillaris spanning ~32 mm on the retina show distinct vascular structures at different fundus locations. Isolated smaller fields at the central fovea and ~6 mm nasal to the fovea at the depths of the choriocapillaris and Sattler's layer show vasculature structures consistent with established architectural morphology from histological and electron micrograph corrosion casting studies. Choriocapillaris imaging was performed in eight healthy volunteers with OCT angiograms successfully acquired from all subjects. These results demonstrate the feasibility of ultrahigh speed OCT for in vivo dye-free choriocapillaris and choroidal vasculature imaging, in addition to conventional structural imaging.National Institutes of Health (U.S.) (NIH R01-EY011289-27)National Institutes of Health (U.S.) (NIH R01-EY013178-12)National Institutes of Health (U.S.) (NIH R44-EY022864-01)National Institutes of Health (U.S.) (NIH R01-CA075289-16)United States. Air Force Office of Scientific Research (AFOSR FA9550-10-1-0551)United States. Air Force Office of Scientific Research (AFOSR FA9550-12-1-0499

    Adaptive Scanning Optical Microscope (ASOM): A multidisciplinary optical microscope design for large field of view and high resolution imaging

    No full text
    From micro-assembly to biological observation, the optical microscope remains one of the most important tools for observing below the threshold of the naked human eye. However, in its conventional form, it suffers from a trade-off between resolution and field of view. This paper presents a new optical microscope design that combines a high speed steering mirror, a custom designed scanner lens, a MEMS deformable mirror, and additional imaging optics to enlarge the field of view while preserving resolving power and operating at a high image acquisition rate. We describe the theory of operation and our design methodology, present a preliminary simulated design, and compare to existing technologies. A reduced functionality experimental prototype demonstrates both microassembly and biological observation tasks

    Development of Measurement System for 3D Microscope

    No full text
    • …
    corecore