53 research outputs found

    Tin dioxide sol-gel derived thin films deposited on porous silicon

    Get PDF
    Undoped and Sb-doped SnO2 sol¿gel derived thin films have been prepared for the first time from tin (IV) ethoxide precursor and SbCl3 in order to be utilised for gas sensing applications where porous silicon is used as a substrate. Transparent, crack-free and adherent layers were obtained on different types of substrates (Si, SiO2/Si). The evolution of the Sn¿O chemical bonds in the SnO2 during film consolidation treatments was monitored by infrared spectroscopy. By energy dispersive X-ray spectroscopy performed on the cross section of the porosified silicon coupled with transmission electron microscopy, the penetration of the SnO2 sol¿gel derived films in the nanometric pores of the porous silicon has been experimentally proved

    Compared efficacy of preservation solutions on the outcome of liver transplantation: Meta-analysis

    Get PDF
    AIM: To compare the effects of the four most commonly used preservation solutions on the outcome of liver transplantations. METHODS: A systematic literature search was performed using MEDLINE, Scopus, EMBASE and the Cochrane Library databases up to January 31(st), 2017. The inclusion criteria were comparative, randomized controlled trials (RCTs) for deceased donor liver (DDL) allografts with adult and pediatric donors using the gold standard University of Wisconsin (UW) solution or histidine-tryptophan-ketoglutarate (HTK), Celsior (CS) and Institut Georges Lopez (IGL-1) solutions. Fifteen RCTs (1830 livers) were included; the primary outcomes were primary non-function (PNF) and one-year post-transplant graft survival (OGS-1). RESULTS: All trials were homogenous with respect to donor and recipient characteristics. There was no statistical difference in the incidence of PNF with the use of UW, HTK, CS and IGL-1 (RR = 0.02, 95%CI: 0.01-0.03, P = 0.356). Comparing OGS-1 also failed to reveal any difference between UW, HTK, CS and IGL-1 (RR = 0.80, 95%CI: 0.80-0.80, P = 0.369). Two trials demonstrated higher PNF levels for UW in comparison with the HTK group, and individual studies described higher rates of biliary complications where HTK and CS were used compared to the UW and IGL-1 solutions. However, the meta-analysis of the data did not prove a statistically significant difference: the UW, CS, HTK and IGL-1 solutions were associated with nearly equivalent outcomes. CONCLUSION: Alternative solutions for UW yield the same degree of safety and effectiveness for the preservation of DDLs, but further well-designed clinical trials are warranted

    Multiscale Investigation of the Structural, Electrical and Photoluminescence Properties of MoS2 Obtained by MoO3 Sulfurization

    Get PDF
    In this paper, we report a multiscale investigation of the compositional, morphological, structural, electrical, and optical emission properties of 2H-MoS2 obtained by sulfurization at 800◦C of very thin MoO3 films (with thickness ranging from ~2.8 nm to ~4.2 nm) on a SiO2/Si substrate. XPS analyses confirmed that the sulfurization was very effective in the reduction of the oxide to MoS2, with only a small percentage of residual MoO3 present in the final film. High-resolution TEM/STEM analyses revealed the formation of few (i.e., 2–3 layers) of MoS2 nearly aligned with the SiO2 surface in the case of the thinnest (~2.8 nm) MoO3 film, whereas multilayers of MoS2 partially standing up with respect to the substrate were observed for the ~4.2 nm one. Such different configurations indicate the prevalence of different mechanisms (i.e., vapour-solid surface reaction or S diffusion within the film) as a function of the thickness. The uniform thickness distribution of the few-layer and multilayer MoS2 was confirmed by Raman mapping. Furthermore, the correlative plot of the characteristic A1g-E2g Raman modes revealed a compressive strain (ε ≈ −0.78 ± 0.18%) and the coexistence of n-and p-type doped areas in the few-layer MoS2 on SiO2, where the p-type doping is probably due to the presence of residual MoO3 . Nanoscale resolution current mapping by C-AFM showed local inhomogeneities in the conductivity of the few-layer MoS2, which are well correlated to the lateral changes in the strain detected by Raman. Finally, characteristic spectroscopic signatures of the defects/disorder in MoS2 films produced by sulfurization were identified by a comparative analysis of Raman and photoluminescence (PL) spectra with CVD grown MoS2 flakes

    Ca silicide films—promising materials for silicon optoelectronics

    Get PDF
    Single-phase films of semiconductor and semimetallic calcium silicides (Ca2Si, CaSi, and CaSi2), as well as films with a significant contribution of Ca5Si3 and Ca14Si19 silicides, were grown on single-crystal silicon and sapphire substrates. The analysis of the crystal structure of the grown films was carried out and the criterion of their matching with silicon and sapphire substrates was determined. Some lattice-matching models were proposed, and the subsequent deformations of the silicide lattices were estimated. Film’s optical functions, including the optical transparency, were calculated from the optical spectroscopy data and an extended comparison was performed with the results of ab initio calculations. The real limits of the optical transparency for the films on sapphire substrates were established. The maximum transparency limit (3.9 eV) was observed for the CaSi film. Based on an analysis of the photoelectric properties of Ca2Si/Si diodes on n- and p-type silicon substrates, a perspective of their applications in silicon optoelectronics was discussed

    Conductive CaSi2 transparent in the near infra-red range

    Get PDF
    The methods of heteroepitaxial growth of Si/CaSi2/Si(111) double heterostructures (DHS) at 500 °C have been developed. Thin CaSi2 layers with the thicknesses of 14-40 nm have been successfully embedded in the silicon matrix. The hR6-CaSi2(001)||Si(111) with hR6-CaSi2[100]||Si[110] epitaxial relationship has been conserved for the embedded CaSi2 layer regardless of its thickness and the Si overgrowth mode (molecular beam epitaxy or solid phase epitaxy). The embedded CaSi2 layers are characterized by the lattice parameter distortion of about ±4% due to the difference in the thermal expansion coefficients of the silicide and silicon. Two types of Si overgrowth atop CaSi2(001) planes have been observed: (i) {111}-twinned Si crystals were found onto the CaSi2(001) surface in the DHS with CaSi2 thickness of 32-40 nm, which have preserved the {111} planes parallel to the Si(111) ones of the substrate; (ii) a polycrystalline twinned Si capping layer with a variable thickness has been formed in the samples with the smallest CaSi2 thickness (14-16 nm). Experimentally determined optical functions for the CaSi2 layer embedded in the silicon matrix have shown the presence of degenerate semiconducting properties with strong absorbance at the photon energies higher than 2.3 eV and small contribution from the free carrier absorption at 0.4-1.2 eV. Ab initio calculations within the generalized gradient approximation and screened hybrid functional of the hR-6 CaSi2 bulk with and without lattice distortion (by ±3%) have demonstrated the metal or gapless semiconductor energy band structure, because the Fermi level crosses several bands also assuming a huge free carrier concentration. The low-temperature Hall measurements and magnetoresistance measurements have proved that CaSi2 films on silicon are a gapless semiconductor with two types of carrier “pockets” (holes and electrons) that determine the resulting conductivity, concentration and mobility as a function of the Fermi level shift with the temperature increase. Mechanisms of the experimentally observed optical transparency of CaSi2 in the infra-red range are discussed

    BUFFER LAYER FILM INTERACTIONS IN THE GROWTH OF TL2BA2CA1CU2OX FILMS ON CEO2 BUFFERED SAPPHIRE

    No full text
    Tl2Ba2Ca1Cu2Ox thin films have been grown on highly textured CeO2 layers deposited onto R-plane sapphire substrates. The Tl2Ba2Ca1Cu2Ox films have critical temperature (Tc) values around 95 K and current density (Jc) values up to 8×104 A/cm2. The films are c-axis oriented even though we have identified the formation of a polycrystalline BaCe(Tl)O3 layer by reaction between the buffer layer and the superconducting precursor during the thalliation process. © 1995 American Institute of Physics

    Improvements in Pt-based Schottky contacts to 3C-SiC

    No full text
    Despite its structural shortcomings (stacking faults, twins and threading dislocations), 3C-SiC heteroepitaxially grown on Si still has potential for high temperature sensor applications for which stable electrical contacts are of extreme importance. Pt/Si multilayered metallisations were compared to conventional Pt ones in order to investigate the effect of excess Si to the metal/SiC interface and the possible improvements in the thermal stability. These contacts were annealed up to 750°C. Their electrical behaviour was analysed by I-V measurements while the interface between the metal system and the 3C-SiC surface was examined by transmission electron microscopy (TEM) and the formed phases were determined by X-ray diffraction (XRD). © 1999 Elsevier Science S.A
    corecore