369 research outputs found

    Algorithmic opacity: making algorithmic processes transparent through abstraction hierarchy

    Get PDF
    In this paper we introduce the problem of algorithmic opacity and the challenges it presents to ethical decision-making in criminal intelligence analysis. Machine learning algorithms have played important roles in the decision-making process over the past decades. Intelligence analysts are increasingly being presented with smart black box automation that use machine learning algorithms to find patterns or interesting and unusual occurrences in big data sets. Algorithmic opacity is the lack visibility of computational processes such that humans are not able to inspect its inner workings to ascertain for themselves how the results and conclusions were computed. This is a problem that leads to several ethical issues. In the VALCRI project, we developed an abstraction hierarchy and abstraction decomposition space to identify important functional relationships and system invariants in relation to ethical goals. Such explanatory relationships can be valuable for making algorithmic process transparent during the criminal intelligence analysis process

    First-order ferromagnetic transitions of lanthanide local moments in divalent compounds: An itinerant electron positive feedback mechanism and Fermi surface topological change

    Get PDF
    Around discontinuous (first-order) magnetic phase transitions the strong caloric response of materials to the application of small fields is widely studied for the development of solid-state refrigeration. Typically strong magnetostructural coupling drives such transitions and the attendant substantial hysteresis dramatically reduces the cooling performance. In this context we describe a purely electronic mechanism which pilots a first-order paramagnetic-ferromagnetic transition in divalent lanthanide compounds and which explains the giant non-hysteretic magnetocaloric effect recently discovered in a Eu2_2In compound. There is positive feedback between the magnetism of itinerant valence electrons and the ferromagnetic ordering of local ff-electron moments, which appears as a topological change to the Fermi surface. The origin of this electronic mechanism stems directly from Eu's divalency, which explains the absence of a similar discontinuous transition in Gd2_2In.Comment: 8 pages, 7 figure

    Temperature dependent carrier lifetime studies of Mo in crystalline silicon

    Get PDF
    The capture cross sections of both electronsσn and holes σp were determined for interstitialmolybdenum in crystalline silicon over the temperature range of −110 to 150 °C. Carrier lifetimemeasurements were performed on molybdenum-contaminated silicon using a temperature controlled photoconductance instrument. Injection dependent lifetime spectroscopy was applied at each temperature to calculate σp and σn. This analysis involved a novel approach that independently determined the capture cross sections at each temperature assuming a known defect density and thermal velocity. Since the energy state is in the lower half of the bandgap, the determination of σp is unaffected by the defect energy at all temperatures, and σp is found to decrease with temperature in a fashion consistent with excitonic Auger capture. At temperatures below 0 °C, the determination of σn is also unaffected by the defect energy due to the suppression of thermal emission, and σn decreases with temperature as well. It is shown that a projection of σn to higher temperature suggests the defect has an energy of 0.375 eV above the valance band edge of silicon.D.M. likes to thank the Australian Research Council for fellowship and G.C. likes to thank “CrystalClear Integrated Project” Contract No. SES6-CT_2003-502583 funded by the European Commission

    Temperature dependent carrier lifetime studies on Ti-doped multicrystalline silicon

    No full text
    Carrier lifetimemeasurements were performed on deliberately Ti-doped multicrystalline silicon wafers using a temperature controlled photoconductance device. The dominant recombination center was found to be the double-donor level associated with interstitial titanium. The interstitial Ti concentrations in multicrystalline silicon wafers were determined by measuring the Shockley–Read–Hall time constant for holes and using the known values of the thermal velocity and capture cross section for holes of the double-donor level at different temperatures. The measured values of the Ti concentration were then used to determine the electron capture cross section of the double-donor level over the temperature range of 140–270 °C via the measured values of the Shockley–Read–Hall time constant for electrons and the known thermal velocity. Multiphonon emission was found to be the most likely capture mechanism for this temperature range for electron capture into the double-donor level of Ti in silicon. The effective segregation coefficient for Ti was estimated by fitting Scheil’s equation to the measured values of the Ti concentrations and their respective vertical positions in the ingot. If all Ti were present as the interstitial double-donor, a lower limit of 1.8×10⁻⁶ can be ascribed to the segregation coefficient, which is very close to the equilibrium value.This work was funded by an Australian Research Council Linkage Grant between the Australian National University, SierraTherm Production Furnaces, and SunPower Corporation. D.H.M. is supported by an Australian Research Council fellowship

    Algorithmic transparency of conversational agents

    Get PDF
    A lack of algorithmic transparency is a major barrier to the adoption of artificial intelligence technologies within contexts which require high risk and high consequence decision making. In this paper we present a framework for providing transparency of algorithmic processes. We include important considerations not identified in research to date for the high risk and high consequence context of defence intelligence analysis. To demonstrate the core concepts of our framework we explore an example application (a conversational agent for knowledge exploration) which demonstrates shared human-machine reasoning in a critical decision making scenario. We include new findings from interviews with a small number of analysts and recommendations for future research

    Generalized procedure to determine the dependence of steady-state photoconductance lifetime on the occupation of multiple defects

    No full text
    We present a procedure to determine the dependence of photoconductance lifetime on the occupation of multiple defects. The procedure requires numerical iteration, making it more cumbersome than the analytical equations available for single-defect and simplified two-defect cases, but enabling the following features: (i) it accounts for the defect concentration when calculating the equilibrium carrier concentrations, (ii) it permits recombination through any number of defects, (iii) it calculates the occupation fraction of all defects at any injection, and (iv) it promotes a good understanding of the role of defect occupation in photoconductance measurements. The utility of the numerical procedure is demonstrated on an experimental sample containing multiple defects. The dependence of the sample’s photoconductance on carrier concentration and temperature can be qualitatively described by the generalized procedure but not by either analytical model. The example also demonstrates that the influence of defect occupation on photoconductance lifetime measurements is mitigated at elevated temperatures—a conclusion of particular worth to the study of multicrystalline silicon.This work was funded by an Australian Research Council Linkage Grant between the Australian National University, SierraTherm Production Furnaces, and SunPower Corporation. D.M. is supported by an Australian Research Council fellowship
    • 

    corecore