11,753 research outputs found
The Intense Radiation Gas
We present a new dispersion relation for photons that are nonlinearly
interacting with a radiation gas of arbitrary intensity due to photon-photon
scattering. It is found that the photon phase velocity decreases with
increasing radiation intensity, it and attains a minimum value in the limit of
super-intense fields. By using Hamilton's ray equations, a self-consistent
kinetic theory for interacting photons is formulated. The interaction between
an electromagnetic pulse and the radiation gas is shown to produce pulse
self-compression and nonlinear saturation. Implications of our new results are
discussed.Comment: 7 pages, 1 figure, version to appear in Europhys. Let
Self-compression and catastrophic collapse of photon bullets in vacuum
Photon-photon scattering, due to photons interacting with virtual
electron-positron pairs, is an intriguing deviation from classical
electromagnetism predicted by quantum electrodynamics (QED). Apart from being
of fundamental interest in itself, collisions between photons are believed to
be of importance in the vicinity of magnetars, in the present generation
intense lasers, and in intense laser-plasma/matter interactions; the latter
recreating astrophysical conditions in the laboratory. We show that an intense
photon pulse propagating through a radiation gas can self-focus, and under
certain circumstances collapse. This is due to the response of the radiation
background, creating a potential well in which the pulse gets trapped, giving
rise to photonic solitary structures. When the radiation gas intensity has
reached its peak values, the gas releases part of its energy into `photon
wedges', similar to Cherenkov radiation. The results should be of importance
for the present generation of intense lasers and for the understanding of
localized gamma ray bursts in astrophysical environments. They could
furthermore test the predictions of QED, and give means to create ultra-intense
photonic pulses.Comment: 4 pages, 1 figur
Nonlinear propagation of broadband intense electromagnetic waves in an electron-positron plasma
A kinetic equation describing the nonlinear evolution of intense
electromagnetic pulses in electron-positron (e-p) plasmas is presented. The
modulational instability is analyzed for a relativistically intense partially
coherent pulse, and it is found that the modulational instability is inhibited
by the spectral pulse broadening. A numerical study for the one-dimensional
kinetic photon equation is presented. Computer simulations reveal a
Fermi-Pasta-Ulam-like recurrence phenomena for localized broadband pulses. The
results should be of importance in understanding the nonlinear propagation of
broadband intense electromagnetic pulses in e-p plasmas in laser-plasma systems
as well as in astrophysical plasma settings.Comment: 16 pages, 5 figures, to appear in Phys. Plasma
Nonlinear dynamics of large amplitude dust acoustic shocks and solitary pulses in dusty plasmas
We present a fully nonlinear theory for dust acoustic (DA) shocks and DA
solitary pulses in a strongly coupled dusty plasma, which have been recently
observed experimentally by Heinrich et al. [Phys. Rev. Lett. 103, 115002
(2009)], Teng et al. [Phys. Rev. Lett. 103, 245005 (2009)], and Bandyopadhyay
et al. [Phys. Rev. Lett. 101, 065006 (2008)]. For this purpose, we use a
generalized hydrodynamic model for the strongly coupled dust grains, accounting
for arbitrary large amplitude dust number density compressions and potential
distributions associated with fully nonlinear nonstationary DA waves.
Time-dependent numerical solutions of our nonlinear model compare favorably
well with the recent experimental works (mentioned above) that have reported
the formation of large amplitude non-stationary DA shocks and DA solitary
pulses in low-temperature dusty plasma discharges.Comment: 9 pages, 4 figures. To be published in Physical Review
Hysteresis in the Random Field Ising Model and Bootstrap Percolation
We study hysteresis in the random-field Ising model with an asymmetric
distribution of quenched fields, in the limit of low disorder in two and three
dimensions. We relate the spin flip process to bootstrap percolation, and show
that the characteristic length for self-averaging increases as in 2d, and as in 3d, for disorder
strength much less than the exchange coupling J. For system size , the coercive field varies as for
the square lattice, and as on the cubic lattice.
Its limiting value is 0 for L tending to infinity, both for square and cubic
lattices. For lattices with coordination number 3, the limiting magnetization
shows no jump, and tends to J.Comment: 4 pages, 4 figure
Exact Solution of Return Hysteresis Loops in One Dimensional Random Field Ising Model at Zero Temperature
Minor hysteresis loops within the main loop are obtained analytically and
exactly in the one-dimensional ferromagnetic random field Ising-model at zero
temperature. Numerical simulations of the model show excellent agreement with
the analytical results
Dynamics of spin 1/2 quantum plasmas
The fully nonlinear governing equations for spin 1/2 quantum plasmas are
presented. Starting from the Pauli equation, the relevant plasma equations are
derived, and it is shown that nontrivial quantum spin couplings arise, enabling
studies of the combined collective and spin dynamics. The linear response of
the quantum plasma in an electron--ion system is obtained and analyzed.
Applications of the theory to solid state and astrophysical systems as well as
dusty plasmas are pointed out.Comment: 4 pages, 2 figures, to appear in Physical Review Letter
Simulation study of magnetic holes at the Earth's collisionless bow shock
Recent observations by the Cluster and Double Star spacecraft at the Earth's bow shock have revealed localized magnetic field and density holes in the solar wind plasma. These structures are characterized by a local depletion of the magnetic field and the plasma density, and by a strong increase of the plasma temperature inside the magnetic and density cavities. Our objective here is to report results of a hybrid-Vlasov simulations of ion-Larmor-radius sized plasma density cavities with parameters that are representative of the high-beta solar wind plasma at the Earth's bow shock. We observe the asymmetric self-steepening and shock-formation of the cavity, and a strong localized temperature increase (by a factor of 5–7) of the plasma due to reflections and shock surfing of the ions against the collisionless shock. Temperature maxima are correlated with density minima, in agreement with Cluster observations. For oblique incidence of the solar wind, we observe efficient acceleration of ions along the magnetic field lines by the shock drift acceleration process
- …