7,061 research outputs found

    Tunneling Density of States of the Interacting Two-Dimensional Electron Gas

    Full text link
    We investigate the influence of electron--electron interactions on the density of states of a ballistic two--dimensional electron gas. The density of states is determined nonperturbatively by means of path integral techniques allowing for reliable results near the Fermi surface, where perturbation theory breaks down. We find that the density of states is suppressed at the Fermi level to a finite value. This suppression factor grows with decreasing electron density and is weakened by the presence of gates.Comment: 4 pages, 2 figures; slightly shortened version published in PR

    Possible mechanism for achieving glass-like thermal conductivities in crystals with off-center atoms

    Full text link
    In the filled Ga/Ge clathrate, Eu and Sr are off-center in site 2 but Ba is on-center. All three filler atoms (Ba,Eu,Sr) have low temperature Einstein modes; yet only for the Eu and Sr systems is there a large dip in the thermal conductivity, attributed to the Einstein modes. No dip is observed for Ba. Here we argue that it is the off-center displacement that is crucial for understanding this unexplained difference in behavior. It enhances the coupling between the "rattler" motion and the lattice phonons for the Eu and Sr systems, and turns on/off another scattering mechanism (for 1K < T < 20K) produced by the presence/absence of off-center sites. The random occupation of different off-center sites produces a high density of symmetry-breaking defects which scatters phonons. It may also be important for improving our understanding of other glassy systems.Comment: 4 pages, 1 figure (2 parts) -- v2: intro broadened; strengthened arguments regarding need for additional phonon scattering mechanis

    Fermion loop simulation of the lattice Gross-Neveu model

    Full text link
    We present a numerical simulation of the Gross-Neveu model on the lattice using a new representation in terms of fermion loops. In the loop representation all signs due to Pauli statistics are eliminated completely and the partition function is a sum over closed loops with only positive weights. We demonstrate that the new formulation allows to simulate volumes which are two orders of magnitude larger than those accessible with standard methods

    On Effective Constraints for the Riemann-Lanczos System of Equations

    Get PDF
    There have been conflicting points of view concerning the Riemann--Lanczos problem in 3 and 4 dimensions. Using direct differentiation on the defining partial differential equations, Massa and Pagani (in 4 dimensions) and Edgar (in dimensions n > 2) have argued that there are effective constraints so that not all Riemann tensors can have Lanczos potentials; using Cartan's criteria of integrability of ideals of differential forms Bampi and Caviglia have argued that there are no such constraints in dimensions n < 5, and that, in these dimensions, all Riemann tensors can have Lanczos potentials. In this paper we give a simple direct derivation of a constraint equation, confirm explicitly that known exact solutions of the Riemann-Lanczos problem satisfy it, and argue that the Bampi and Caviglia conclusion must therefore be flawed. In support of this, we refer to the recent work of Dolan and Gerber on the three dimensional problem; by a method closely related to that of Bampi and Caviglia, they have found an 'internal identity' which we demonstrate is precisely the three dimensional version of the effective constraint originally found by Massa and Pagani, and Edgar.Comment: 9pages, Te

    Charge Order Superstructure with Integer Iron Valence in Fe2OBO3

    Get PDF
    Solution-grown single crystals of Fe2OBO3 were characterized by specific heat, Mossbauer spectroscopy, and x-ray diffraction. A peak in the specific heat at 340 K indicates the onset of charge order. Evidence for a doubling of the unit cell at low temperature is presented. Combining structural refinement of diffraction data and Mossbauer spectra, domains with diagonal charge order are established. Bond-valence-sum analysis indicates integer valence states of the Fe ions in the charge ordered phase, suggesting Fe2OBO3 is the clearest example of ionic charge order so far.Comment: 4 pages, 5 figures. Fig. 3 is available in higher resolution from the authors. PRL in prin

    Attractive Interaction Between Pulses in a Model for Binary-Mixture Convection

    Full text link
    Recent experiments on convection in binary mixtures have shown that the interaction between localized waves (pulses) can be repulsive as well as {\it attractive} and depends strongly on the relative {\it orientation} of the pulses. It is demonstrated that the concentration mode, which is characteristic of the extended Ginzburg-Landau equations introduced recently, allows a natural understanding of that result. Within the standard complex Ginzburg-Landau equation this would not be possible.Comment: 7 pages revtex with 3 postscript figures (uuencoded

    Cohesive energies of cubic III-V semiconductors

    Full text link
    Cohesive energies for twelve cubic III-V semiconductors with zincblende structure have been determined using an ab-initio scheme. Correlation contributions, in particular, have been evaluated using the coupled-cluster approach with single and double excitations (CCSD). This was done by means of increments obtained for localized bond orbitals and for pairs and triples of such bonds. Combining these results with corresponding Hartree-Fock data, we recover about 92 \% of the experimental cohesive energies.Comment: 16 pages, 1 figure, late

    Influence of electron correlations on ground-state properties of III-V semiconductors

    Full text link
    Lattice constants and bulk moduli of eleven cubic III-V semiconductors are calculated using an ab initio scheme. Correlation contributions of the valence electrons, in particular, are determined using increments for localized bonds and for pairs and triples of such bonds; individual increments, in turn, are evaluated using the coupled cluster approach with single and double excitations. Core-valence correlation is taken into account by means of a core polarization potential. Combining the results at the correlated level with corresponding Hartree-Fock data, we obtain lattice constants which agree with experiment within an average error of -0.2%; bulk moduli are accurate to +4%. We discuss in detail the influence of the various correlation contributions on lattice constants and bulk moduli.Comment: 4 pages, Latex, no figures, Phys. Rev. B, accepte

    Generic metrics and the mass endomorphism on spin three-manifolds

    Full text link
    Let (M,g)(M,g) be a closed Riemannian spin manifold. The constant term in the expansion of the Green function for the Dirac operator at a fixed point p∈Mp\in M is called the mass endomorphism in pp associated to the metric gg due to an analogy to the mass in the Yamabe problem. We show that the mass endomorphism of a generic metric on a three-dimensional spin manifold is nonzero. This implies a strict inequality which can be used to avoid bubbling-off phenomena in conformal spin geometry.Comment: 8 page

    Incommensurate Charge Order Phase in Fe2OBO3 due to Geometrical Frustration

    Get PDF
    The temperature dependence of charge order in Fe2OBO3 was investigated by resistivity and differential scanning calorimetry measurements, Mossbauer spectroscopy, and synchrotron x-ray scattering, revealing an intermediate phase between room temperature and 340 K, characterized by coexisting mobile and immobile carriers, and by incommensurate superstructure modulations with temperature-dependent propagation vector (1/2,0,tau). The incommensurate modulations arise from specific anti-phase boundaries with low energy cost due to geometrical charge frustration.Comment: 4 p., 5 fig.; v2: slightly expanded introduction + minor changes. PRL in prin
    • …
    corecore