56 research outputs found

    Dark-State Polaritons for multi-component and stationary light fields

    Full text link
    We present a general scheme to determine the loss-free adiabatic eigensolutions (dark-state polaritons) of the interaction of multiple probe laser beams with a coherently driven atomic ensemble under conditions of electromagnetically induced transparency. To this end we generalize the Morris-Shore transformation to linearized Heisenberg-Langevin equations describing the coupled light-matter system in the weak excitation limit. For the simple lambda-type coupling scheme the generalized Morris-Shore transformation reproduces the dark-state polariton solutions of slow light. Here we treat a closed-loop dual-V scheme wherein two counter-propagating control fields generate a quasi stationary pattern of two counter-propagating probe fields -- so-called stationary light. We show that contrary to previous predictions,there exists a single unique dark-state polariton; it obeys a simple propagation equation.Comment: 6 pages, 2 figure

    Robust optical delay lines via topological protection

    Get PDF
    Phenomena associated with topological properties of physical systems are naturally robust against perturbations. This robustness is exemplified by quantized conductance and edge state transport in the quantum Hall and quantum spin Hall effects. Here we show how exploiting topological properties of optical systems can be used to implement robust photonic devices. We demonstrate how quantum spin Hall Hamiltonians can be created with linear optical elements using a network of coupled resonator optical waveguides (CROW) in two dimensions. We find that key features of quantum Hall systems, including the characteristic Hofstadter butterfly and robust edge state transport, can be obtained in such systems. As a specific application, we show that the topological protection can be used to dramatically improve the performance of optical delay lines and to overcome limitations related to disorder in photonic technologies.Comment: 9 pages, 5 figures + 12 pages of supplementary informatio

    From Anderson to anomalous localization in cold atomic gases with effective spin-orbit coupling

    Full text link
    We study the dynamics of a one-dimensional spin-orbit coupled Schrodinger particle with two internal components moving in a random potential. We show that this model can be implemented by the interaction of cold atoms with external lasers and additional Zeeman and Stark shifts. By direct numerical simulations a crossover from an exponential Anderson-type localization to an anomalous power-law behavior of the intensity correlation is found when the spin-orbit coupling becomes large. The power-law behavior is connected to a Dyson singularity in the density of states emerging at zero energy when the system approaches the quasi-relativistic limit of the random mass Dirac model. We discuss conditions under which the crossover is observable in an experiment with ultracold atoms and construct explicitly the zero-energy state, thus proving its existence under proper conditions.Comment: 4 pages and 4 figure

    Demonstration of Universal Parametric Entangling Gates on a Multi-Qubit Lattice

    Get PDF
    We show that parametric coupling techniques can be used to generate selective entangling interactions for multi-qubit processors. By inducing coherent population exchange between adjacent qubits under frequency modulation, we implement a universal gateset for a linear array of four superconducting qubits. An average process fidelity of F=93%\mathcal{F}=93\% is estimated for three two-qubit gates via quantum process tomography. We establish the suitability of these techniques for computation by preparing a four-qubit maximally entangled state and comparing the estimated state fidelity against the expected performance of the individual entangling gates. In addition, we prepare an eight-qubit register in all possible bitstring permutations and monitor the fidelity of a two-qubit gate across one pair of these qubits. Across all such permutations, an average fidelity of F=91.6±2.6%\mathcal{F}=91.6\pm2.6\% is observed. These results thus offer a path to a scalable architecture with high selectivity and low crosstalk

    A Green's function approach to transmission of massless Dirac fermions in graphene through an array of random scatterers

    Full text link
    We consider the transmission of massless Dirac fermions through an array of short range scatterers which are modeled as randomly positioned δ\delta- function like potentials along the x-axis. We particularly discuss the interplay between disorder-induced localization that is the hallmark of a non-relativistic system and two important properties of such massless Dirac fermions, namely, complete transmission at normal incidence and periodic dependence of transmission coefficient on the strength of the barrier that leads to a periodic resonant transmission. This leads to two different types of conductance behavior as a function of the system size at the resonant and the off-resonance strengths of the delta function potential. We explain this behavior of the conductance in terms of the transmission through a pair of such barriers using a Green's function based approach. The method helps to understand such disordered transport in terms of well known optical phenomena such as Fabry Perot resonances.Comment: 22 double spaced single column pages. 15 .eps figure

    Relativistic quantum effects of Dirac particles simulated by ultracold atoms

    Full text link
    Quantum simulation is a powerful tool to study a variety of problems in physics, ranging from high-energy physics to condensed-matter physics. In this article, we review the recent theoretical and experimental progress in quantum simulation of Dirac equation with tunable parameters by using ultracold neutral atoms trapped in optical lattices or subject to light-induced synthetic gauge fields. The effective theories for the quasiparticles become relativistic under certain conditions in these systems, making them ideal platforms for studying the exotic relativistic effects. We focus on the realization of one, two, and three dimensional Dirac equations as well as the detection of some relativistic effects, including particularly the well-known Zitterbewegung effect and Klein tunneling. The realization of quantum anomalous Hall effects is also briefly discussed.Comment: 22 pages, review article in Frontiers of Physics: Proceedings on Quantum Dynamics of Ultracold Atom

    Enhancement of Rydberg-mediated single-photon nonlinearities by electrically tuned Förster resonances

    Get PDF
    We demonstrate experimentally that Stark-tuned Förster resonances can be used to substantially increase the interaction between individual photons mediated by Rydberg interaction inside an optical medium. This technique is employed to boost the gain of a Rydberg-mediated single-photon transistor and to enhance the non-destructive detection of single Rydberg atoms. Furthermore, our all-optical detection scheme enables high-resolution spectroscopy of two-state Förster resonances, revealing the fine structure splitting of high-n Rydberg states and the non-degeneracy of Rydberg Zeeman substates in finite fields. We show that the ∣50S1/2,48S1/2⟩↔∣49P1/2,48P1/2⟩ pair state resonance in 87Rb enables simultaneously a transistor gain G>100 and all-optical detection fidelity of single Rydberg atoms F>0.8. We demonstrate for the first time the coherent operation of the Rydberg transistor with G>2 by reading out the gate photon after scattering source photons. Comparison of the observed readout efficiency to a theoretical model for the projection of the stored spin wave yields excellent agreement and thus successfully identifies the main decoherence mechanism of the Rydberg transistor

    Synaptic Vesicle Docking: Sphingosine Regulates Syntaxin1 Interaction with Munc18

    Get PDF
    Consensus exists that lipids must play key functions in synaptic activity but precise mechanistic information is limited. Acid sphingomyelinase knockout mice (ASMko) are a suitable model to address the role of sphingolipids in synaptic regulation as they recapitulate a mental retardation syndrome, Niemann Pick disease type A (NPA), and their neurons have altered levels of sphingomyelin (SM) and its derivatives. Electrophysiological recordings showed that ASMko hippocampi have increased paired-pulse facilitation and post-tetanic potentiation. Consistently, electron microscopy revealed reduced number of docked vesicles. Biochemical analysis of ASMko synaptic membranes unveiled higher amounts of SM and sphingosine (Se) and enhanced interaction of the docking molecules Munc18 and syntaxin1. In vitro reconstitution assays demonstrated that Se changes syntaxin1 conformation enhancing its interaction with Munc18. Moreover, Se reduces vesicle docking in primary neurons and increases paired-pulse facilitation when added to wt hippocampal slices. These data provide with a novel mechanism for synaptic vesicle control by sphingolipids and could explain cognitive deficits of NPA patients
    • …
    corecore