67 research outputs found
High-levelexpression of functional recombinant human coagulation factor VII in insect cells
Abstract:
Recombinant coagulation factor VII (FVII) is used as a potential therapeutic intervention in hemophilia patients who produce antibodies against the coagulation factors. Mammalian cell lines provide low levels of expression, however, the Spodoptera frugiperda Sf9 cell line and baculovirus expression system are powerful systems for high-level expression of recombinant proteins, but due to the lack of endogenous vitamin K-dependent carboxylase, expression of functional FVII using this system is impossible. In the present study, we report a simple but versatile method to overcome the defect for high-level expression of the functional recombinant coagulation FVII in Sf9 cells. This method involves simultaneous expression of both human γ-carboxylase (hGC) and human FVII genes in the host. It may be possible to express other vitamin K-dependent coagulation factors using this method in the future.
Keywords: Baculovirus; γ-carboxylase; Coagulation FVII; Factor VII; Insect cel
TRH: Pathophysiologic and clinical implications
Thyrotropin releasing hormone is thought to be a tonic stimulator of the pituitary TSH secretion regulating the setpoint of the thyrotrophs to the suppressive effect of thyroid hormones. The peptide stimulates the release of normal and elevated prolactin. ACTH and GH may increase in response to exogenous TRH in pituitary ACTH and GH hypersecretion syndromes and in some extrapituitary diseases.
The pathophysiological implications of extrahypothalamic TRH in humans are essentially unknown.
The TSH response to TRH is nowadays widely used as a diganostic amplifier in thyroid diseases being suppressed in borderline and overt hyperthyroid states and increased in primary thyroid failure. In hypothyroid states of hypothalamic origin, TSH increases in response to exogenous TRH often with a delayed and/or exaggerated time course.
But in patients with pituitary tumors and suprasellar extension TSH may also respond to TRH despite secondary hypothyroidism. This TSH increase may indicate a suprasellar cause for the secondary hypothyroidism, probably due to portal vessel occlusion. The TSH released in these cases is shown to be biologically inactive
Survival of Chondrocytes in Rabbit Septal Cartilage After Electromechanical Reshaping
Electromechanical reshaping (EMR) has been recently described as an alternative method for reshaping facial cartilage without the need for incisions or sutures. This study focuses on determining the short- and long-term viability of chondrocytes following EMR in cartilage grafts maintained in tissue culture. Flat rabbit nasal septal cartilage specimens were bent into semi-cylindrical shapes by an aluminum jig while a constant electric voltage was applied across the concave and convex surfaces. After EMR, specimens were maintained in culture media for 64 days. Over this time period, specimens were serially biopsied and then stained with a fluorescent live–dead assay system and imaged using laser scanning confocal microscopy. In addition, the fraction of viable chondrocytes was measured, correlated with voltage, voltage application time, electric field configuration, and examined serially. The fraction of viable chondrocytes decreased with voltage and application time. High local electric field intensity and proximity to the positive electrode also focally reduced chondrocyte viability. The density of viable chondrocytes decreased over time and reached a steady state after 2–4 weeks. Viable cells were concentrated within the central region of the specimen. Approximately 20% of original chondrocytes remained viable after reshaping with optimal voltage and application time parameters and compared favorably with conventional surgical shape change techniques such as morselization
Determinants of distribution and prevalence of avian malaria in blue tit populations across Europe: separating host and parasite effects
Although avian malarial parasites are globally distributed, the factors that affect the geographical distribution and local prevalence of different parasite lineages across host populations or species are still poorly understood. Based on the intense screening of avian malarial parasites in nine European blue tit populations, we studied whether distribution ranges as well as local adaptation, host specialization and phylogenetic relationships can determine the observed prevalences within populations. We found that prevalence differed consistently between parasite lineages and host populations, indicating that the transmission success of parasites is lineage specific but is partly shaped by locality-specific effects. We also found that the lineage-specific estimate of prevalence was related to the distribution range of parasites: lineages found in more host populations were generally more prevalent within these populations. Additionally, parasites with high prevalence that were also widely distributed among blue tit populations were also found to infect more host species. These findings suggest that parasites reaching high local prevalence can also realize wide distribution at a global scale that can have further consequences for host specialization. Although phylogenetic relationships among parasites did not predict prevalence, we detected a close match between a tree based on the geographic distance of the host populations and the parasite phylogenetic tree, implying that neighbouring host populations shared a related parasite fauna
Prediction of increased risk of EUSIG defined hypotensive events using a bayesian artificial neural network
BACKGROUND: Hypotension is recognized as a potentially damaging secondary insult after traumatic brain injury. Systems to give clinical teams some early warning of likely hypotensive instability could be added to the range of existing techniques used in the management of this group of patients. By using the Edinburgh University Secondary Insult Grades (EUSIG) definitions for -hypotension (systolic arterial pressure <90 mmHg OR mean arterial -pressure <70 mmHg) we collected a group of ∼2,000 events by analyzing the Brain-IT database. We then constructed a Bayesian Artificial Neural Network (an advanced statistical modeling technique) that is able to provide some early warning when trained on this previously collected demographic and physiological data.
MATERIALS AND METHODS: Using EUSIG defined event data from the Brain-IT database, we identified a Bayesian artificial neural network (BANN) topology and constructed a series of datasets using a group of clinically guided input variables. This allowed us to train a BANN, which was then tested on an unseen set of patients from the Brain-IT database. The initial tests used a particularly harsh assessment criterion whereby a true positive prediction was only allowed if the BANN predicted an upcoming event to the exact minute. We have now developed the system to the point where it is about to be used in a two-stage Phase II clinical trial and we are also researching a more realistic assessment technique.
KEY RESULTS: We have constructed a BANN that is able to provide early warning to the clinicians based on a model that uses information from the physiological inputs; systolic and mean arterial pressure and heart rate; and demographic variables age and gender. We use 15-min SubWindows starting at 15 and 30 min before an event and process mean, slope and standard deviations. Based on 10 simulation runs, our current sensitivity is 36.25% (SE 1.31) with a specificity of 90.82% (SE 0.85). Initial results from a Phase I clinical study shows a model sensitivity of 40.95% (SE 6%) and specificity of 86.46% (SE 3%) Although this figure is low it is considered clinically useful for this dangerous condition, provided the false positive rate can be kept sufficiently low as to be practical in an intensive care environment.
CONCLUSION: We have shown that using advanced statistical modeling techniques can provide clinical teams with useful information that will assist clinical care
- …