3,317 research outputs found
Critical Casimir effect in classical binary liquid mixtures
If a fluctuating medium is confined, the ensuing perturbation of its
fluctuation spectrum generates Casimir-like effective forces acting on its
confining surfaces. Near a continuous phase transition of such a medium the
corresponding order parameter fluctuations occur on all length scales and
therefore close to the critical point this effect acquires a universal
character, i.e., to a large extent it is independent of the microscopic details
of the actual system. Accordingly it can be calculated theoretically by
studying suitable representative model systems.
We report on the direct measurement of critical Casimir forces by total
internal reflection microscopy (TIRM), with femto-Newton resolution. The
corresponding potentials are determined for individual colloidal particles
floating above a substrate under the action of the critical thermal noise in
the solvent medium, constituted by a binary liquid mixture of water and
2,6-lutidine near its lower consolute point. Depending on the relative
adsorption preferences of the colloid and substrate surfaces with respect to
the two components of the binary liquid mixture, we observe that, upon
approaching the critical point of the solvent, attractive or repulsive forces
emerge and supersede those prevailing away from it. Based on the knowledge of
the critical Casimir forces acting in film geometries within the Ising
universality class and with equal or opposing boundary conditions, we provide
the corresponding theoretical predictions for the sphere-planar wall geometry
of the experiment. The experimental data for the effective potential can be
interpreted consistently in terms of these predictions and a remarkable
quantitative agreement is observed.Comment: 30 pages, 17 figure
Normal and lateral critical Casimir forces between colloids and patterned substrates
We study the normal and lateral effective critical Casimir forces acting on a
spherical colloid immersed in a critical binary solvent and close to a
chemically structured substrate with alternating adsorption preference. We
calculate the universal scaling function for the corresponding potential and
compare our results with recent experimental data [Soyka F., Zvyagolskaya O.,
Hertlein C., Helden L., and Bechinger C., Phys. Rev. Lett., 101, 208301
(2008)]. The experimental potentials are properly captured by our predictions
only by accounting for geometrical details of the substrate pattern for which,
according to our theory, critical Casimir forces turn out to be a sensitive
probe.Comment: 6 pages, 3 figure
Critical Casimir effect in films for generic non-symmetry-breaking boundary conditions
Systems described by an O(n) symmetrical Hamiltonian are considered
in a -dimensional film geometry at their bulk critical points. A detailed
renormalization-group (RG) study of the critical Casimir forces induced between
the film's boundary planes by thermal fluctuations is presented for the case
where the O(n) symmetry remains unbroken by the surfaces. The boundary planes
are assumed to cause short-ranged disturbances of the interactions that can be
modelled by standard surface contributions corresponding
to subcritical or critical enhancement of the surface interactions. This
translates into mesoscopic boundary conditions of the generic
symmetry-preserving Robin type .
RG-improved perturbation theory and Abel-Plana techniques are used to compute
the -dependent part of the reduced excess free energy per
film area to two-loop order. When , it takes the scaling
form as
, where are scaling fields associated with the
surface-enhancement variables , while is a standard
surface crossover exponent. The scaling function
and its analogue for the Casimir force
are determined via expansion in and extrapolated to
dimensions. In the special case , the expansion
becomes fractional. Consistency with the known fractional expansions of D(0,0)
and to order is achieved by appropriate
reorganisation of RG-improved perturbation theory. For appropriate choices of
and , the Casimir forces can have either sign. Furthermore,
crossovers from attraction to repulsion and vice versa may occur as
increases.Comment: Latex source file, 40 pages, 9 figure
Critical Casimir forces and adsorption profiles in the presence of a chemically structured substrate
Motivated by recent experiments with confined binary liquid mixtures near
demixing, we study the universal critical properties of a system, which belongs
to the Ising universality class, in the film geometry. We employ periodic
boundary conditions in the two lateral directions and fixed boundary conditions
on the two confining surfaces, such that one of them has a spatially
homogeneous adsorption preference while the other one exhibits a laterally
alternating adsorption preference, resembling locally a single chemical step.
By means of Monte Carlo simulations of an improved Hamiltonian, so that the
leading scaling corrections are suppressed, numerical integration, and
finite-size scaling analysis we determine the critical Casimir force and its
universal scaling function for various values of the aspect ratio of the film.
In the limit of a vanishing aspect ratio the critical Casimir force of this
system reduces to the mean value of the critical Casimir force for laterally
homogeneous ++ and +- boundary conditions, corresponding to the surface spins
on the two surfaces being fixed to equal and opposite values, respectively. We
show that the universal scaling function of the critical Casimir force for
small but finite aspect ratios displays a linear dependence on the aspect ratio
which is solely due to the presence of the lateral inhomogeneity. We also
analyze the order-parameter profiles at criticality and their universal scaling
function which allows us to probe theoretical predictions and to compare with
experimental data.Comment: revised version, section 5.2 expanded; 53 pages, 12 figures, iopart
clas
Flavor conversion of cosmic neutrinos from hidden jets
High energy cosmic neutrino fluxes can be produced inside relativistic jets
under the envelopes of collapsing stars. In the energy range E ~ (0.3 - 1e5)
GeV, flavor conversion of these neutrinos is modified by various matter effects
inside the star and the Earth. We present a comprehensive (both analytic and
numerical) description of the flavor conversion of these neutrinos which
includes: (i) oscillations inside jets, (ii) flavor-to-mass state transitions
in an envelope, (iii) loss of coherence on the way to observer, and (iv)
oscillations of the mass states inside the Earth. We show that conversion has
several new features which are not realized in other objects, in particular
interference effects ("L- and H- wiggles") induced by the adiabaticity
violation. The neutrino-neutrino scattering inside jet and inelastic neutrino
interactions in the envelope may produce some additional features at E > 1e4
GeV. We study dependence of the probabilities and flavor ratios in the
matter-affected region on angles theta13 and theta23, on the CP-phase delta, as
well as on the initial flavor content and density profile of the star. We show
that measurements of the energy dependence of the flavor ratios will, in
principle, allow to determine independently the neutrino and astrophysical
parameters.Comment: 56 pages, 19 figures. Minor changes. Accepted by JHEP
Lower Energy Consequences of an Anomalous High-Energy Neutrino Cross-Section
A new strong-interaction has been postulated for neutrinos above ~10^{19} eV
to explain the production of highest-energy cosmic ray events. We derive a
dispersion relation relating the hypothesized high-energy cross-section to the
lower-energy neutrino-nucleon elastic amplitude. Remarkably, we find that the
real forward amplitude becomes anomalous seven orders of magnitude lower in
energy than does the total cross-section. We discuss possible measurable
consequences of this early onset of new neutrino physics, and conclude that a
significantly enhanced elastic \nu-N scattering rate may occur for the neutrino
beams available at Fermilab and CERN.Comment: 13 pages, LaTe
Fiber Coupled Transceiver with 6.5 THz Bandwidth for Terahertz Time-Domain Spectroscopy in Reflection Geometry
We present a fiber coupled transceiver head for terahertz (THz) time-domain reflection measurements. The monolithically integrated transceiver chip is based on iron (Fe) doped In0.53Ga0.47As (InGaAs:Fe) grown by molecular beam epitaxy. Due to its ultrashort electron lifetime and high mobility, InGaAs:Fe is very well suited as both THz emitter and receiver. A record THz bandwidth of 6.5 THz and a peak dynamic range of up to 75 dB are achieved. In addition, we present THz imaging in reflection geometry with a spatial resolution as good as 130 µm. Hence, this THz transceiver is a promising device for industrial THz sensing applications
- …